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In existing models and embedding methods of networked systems, node features describing their
qualities are usually overlooked in favor of focusing solely on node connectivity. This study introduces
FiD-Mercator, amodel-basedultra-lowdimensional reduction technique that integrates node features
with network structure to createD-dimensionalmaps of complex networks in a hyperbolic space. This
embedding method efficiently uses features as an initial condition, guiding the search of nodes’
coordinates toward an optimal solution. The research reveals that downstream task performance
improves with the correlation between network connectivity and features, emphasizing the
importance of such correlation for enhancing the description and predictability of real networks.
Simultaneously, hyperbolic embedding’s ability to reproduce local network properties remains
unaffected by the inclusion of features. The findings highlight the necessity for developing network
embedding techniques capable of exploiting such correlations to optimize both network structure and
feature association jointly in the future.

Factors relevant to the links’ formation process in real-world complex
networks are typically numerous, and unknown or difficult tomeasure. For
instance, off-line and on-line social relations of friendship can be sustained
by a variety of reasons including individual factors, such as approachability
or social skills, and environmental factors, such as geographic proximity and
life events and activities. This has not prevented that generative models
based on simple connectivity rules are able to capture many of the salient
properties of real networks, such as degree heterogeneity, small-worldness,
clustering, and community structure.

Such is the case of a family of geometric random graph models1,2, in
which pairs of nodes are connected with a probability that depends on their
popularity and on their distance in a similarity metric space. For a real
network, these variables can be inferred bymaximizing the likelihood of the
model to reproduce the observed structure, as done by the embedding tool
Mercator3. The combined use of geometric models and embedding tools
prove that hyperbolic space is a natural geometry for real networks4, and
have been able to explain heterogeneous degree distributions, clustering,
small-worldness, percolation, spectral properties, community structure,
different forms of self-similarity, preferential attachment in growing net-
works, the non-trivial coupling between weights and topology, correlations
in multilayer networks, and served as the basis for defining a renormali-
zation group for complex networks, see ref. 2 and references therein.

The popularity component of the hyperbolic space where real net-
works are embedded accounts for nodes’ degrees, and distances in the

similarity subspace for affinities not influenced by degrees. Assuming that
relational properties of nodes, other than popularity, define this similarity
subspace, it is expected that the organization of real networks often corre-
lates with node descriptive metadata. This acts as additional information to
the network topology, enriching the description of nodes and helping to
discover, identify, and categorize them. Going back to the example of
friendship networks, link formation could be strongly affected by age,
gender, interests, background, and other social determinants5–7. This
influence is often captured inhyperbolicmaps of real networks, even though
the corresponding informationwasnotdeliberately incorporatedduring the
mapping process. For instance, autonomous systems form clusters in the
similarity space according to geographic data in hyperbolic maps of the
Internet8, and functional modules form clusters in the hyperbolic maps of
brain connectomes9. However, this might not always be the case and
descriptive metadata could be irrelevant or only partially correlated with
network structure and cannot be treated as ground truth10.

Under certain conditions, integratingmetadatawith network structure
can enhance the accuracy of community detection methods10–14 and facil-
itate a more realistic assessment of the robustness of interconnected
systems15. This poses the question of whether integrating structural infor-
mation and metadata in network models enables a better understanding of
connectivity in complex systems and a better performance in downstream
tasks like node classification or prediction of missing links. From a broader
perspective, adding features to thenetwork structure leads to a hybridization
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that reveals a distinct typeof spatial description through the implementation
of a different inductive bias. This bias involves a set of assumptions that
consider both features and network structure simultaneously and inde-
pendently of whether they are correlated.

Embedding techniques in machine learning, particularly graph neural
networks (GNNs)16–19, naturally work by aggregating the node-level infor-
mation extracted from the nodes’ features via message passing. They have
been shown to achieve good performance on downstream tasks. However,
vanilla GNNs work well only if a network is homophilic, i.e., a network
where connected nodes have the same class labels and similar features20,21.
Many popular GNNs fail to generalize to this setting and are even out-
performed by models that ignore the graph structure. It is also worth
mentioning that GNNs are data-driven and task-oriented embedding
methods. On the other hand, unsupervised machine learning models, such
asNode2Vec22 orDeepWalk23, can be applied tomultiple downstream tasks
but rely purely on the structure of the graph to generate embeddings.

The integration of network structure and descriptive metadata can be
implemented in the embedding process to produce maps of real networks
where coordinates of nodes are determined by the two sources of infor-
mation, and where the relative attention paid to one versus the other can be
controlled. The last and more advanced generator of model-based hyper-
bolic maps is D-Mercator24, a generalization of Mercator3 to multi-
dimensional hyperbolic embedding. As demonstrated in ref. 25, real-world
complex networks exhibit a compelling fit within the framework of
hyperbolic spaces characterized by low dimensionality, typically falling
within the range of D∈ [2, 10]. This observation provides a solid rationale
for extending the foundation laid by D-Mercator as outlined in ref. 24, by
incorporating node features into the model.

In this paper, we introduce a model-based dimensional reduction
technique named Feature-initialized D-dimensional Mercator, FiD-Mer-
cator, that embeds networks into an ultra-lowdimensional hyperbolic space
by combiningnetwork topology and the collection of features describing the
qualities of nodes. Our overarching goals are to provide an embedding tool
that hybridizes network topology and features, and work toward clarifying
to what extent node features can help in explaining the structure of real
networks, and under which conditions it is advantageous to supplement
geometric networkmodels with this information for specific tasks.We used
our tool to analyze link prediction and node classification in real networks
and we found that the amount of correlation between network connectivity
and descriptive metadata determines performance. In general, when this
correlation is high, adding features opens a fast track to optimized
embeddings for link prediction and improves the node classification results
significantly.

Results
The FiD-Mercator embedding method
Given a graph-structured dataset consisting of a set of N nodes forming a
complex network and a set of NF features associated with the same set of
nodes, the embedding method FiD-Mercator finds the hidden variables in
the geometric soft configuration SD model1, HDþ1 in the isomorphic
hyperbolic geometry formulation26, that best reproduces the topology of the
network. In theSD model, networks exist in anunderlyingmetric spacewith
an effective hyperbolic geometry27.

The coordinates of theN nodes in the latent space represent popularity
and similarity dimensions. The popularity dimension of a node is associated
with its hidden degree κ, equivalent to a radial coordinate in hyperbolic
space and proportional to its observed degree in the network topology. The
similarity subspace is represented as a D-sphere, which is a hypersphere in
the (D+ 1)-dimensional Euclidean space. In this representation, nodes
occupy predetermined positions, with angular distances between them
representing all the influential factors, aside from degrees, that affect their
likelihood to form connections.

Connection probabilities are dictated by effective distances, which are
derived from both hidden degrees and angular separations. This follows a
gravity law principle, whereby nodes with higher hidden degrees or those

positioned closely in the similarity space are more likely to connect with
others. The connection probability is influenced by two parameters: β,
which must be greater than D, controls the clustering of the network
ensemble and quantifies the level of coupling between the network topology
and themetric space; and μ, which dictates the average degree. In this work,
we restrict toD = 2 for ease of visualization and to constrain the number of
variables involved. The similarity space of the S2 model is represented as a
two-dimensional sphere of radius R, see section “S2 model” for technical
details. It is important to note that not all networks are optimally repre-
sented inD = 2.However, the results could only be enhanced by identifying
the most suitable dimension for a given network.

On top of leveraging the capacity of the SD model to fit realistic
network structures, FiD-Mercator employs the Uniform Manifold
Approximation and Projection (UMAP) algorithm28 for dimension-
ality reduction (section “The UMAP algorithm”). UMAP allows us to
obtain an informed initial guess of the coordinates of the nodes in the
similarity subspace using the information encoded into the nodes’
features. These coordinates are subsequently adjusted by a maximum
likelihood estimation technique to improve the probability that the
observed network topology is reproduced by the model. Standard D-
Mercator is instead initialized with coordinates on top of SD that only
depend on the connectivity structure of the network. Given the
complexity of the optimization process, such initial conditions may
lead to reasonable but not optimal embeddings. Thus, the key con-
tribution of FiD-Mercator over D-Mercator is that we determine a
guided initial condition by mapping the high-dimensional vectors of
node features on the two-sphere instead of extracting it from the
network topology, such that the final embedding incorporates infor-
mation about both the connectivity structure of the network and
features describing nodes’ qualities. Notice that other manifold
learning techniques could be used instead of UMAP as far as they
produce a projection in the two-sphere that is able to discern features.
UMAP is particularly convenient for its favorable trade-off between
accuracy and computation cost.

FiD-Mercator pipeline. In practical terms, FiD-Mercator builds upon
themultidimensional hyperbolic embedding toolD-Mercator24. This tool
employs a machine learning method and a statistical inference technique
to pinpoint the hidden degrees and the angular coordinates that max-
imize the likelihood of accurately reproducing a network’s topology
through the geometric soft configuration SD model. Furthermore, it
adjusts the parameters β and μ based on this model. FiD-Mercator
leverages the maximum likelihood estimation machinery ofD-Mercator.
However, it differs in its approach to obtaining an initial condition from
the network topology. Rather than employing the Laplacian Eigenmaps
method29 adjusted by the model, FiD-Mercator uses the UMAP dimen-
sion reduction technique to embed node features onto the two-sphere.
UMAP is a well-established tool for representing and visualizing data in
ultra-low dimensions. Offering exceptional efficiency with intuitive
parameters, it makes a suitable choice for our applications.

TheFiD-Mercatormethod requires twoprimary inputs. Thefirst is the
adjacency matrix, denoted as {aij}, which encodes the topology of the net-
work,withaij = 1 if the linkbetweennodes i and j exists andaij = 0otherwise.
The second input is the feature matrix, {fim}. This matrix is formed by the
collection of NF binary features associated with the nodes, where fim = 1 if
node i exhibits feature m and fim = 0 otherwise. The embedding process
consists of the following steps: (1) inferring the hidden degrees κ, (2)
inferring the inverse temperature β from the network topology, (3) initial
embedding of the nodes using node vector features and the UMAP algo-
rithm, (4) adjustment of the angular coordinates by maximizing likelihood
(ML) to improve the congruency between the original network and the
model, and (5) final adjustment of hidden degrees according to the final
angular positions. These steps are explained in more detail in section “The
FiD-Mercator algorithm”. The schematic representation of the algorithm is
shown in Fig. 1.

https://doi.org/10.1038/s44260-024-00013-z Article

npj Complexity |            (2024) 1:13 2



Notice that by using UMAP, we can work with networks containing
more than one connected component. This is a situation that cannot be
addressed in D-Mercator, as the Laplacian Eigenmaps technique used to
provide the initial condition there requires having only one connected
component. Nevertheless, in this work we keep working with the largest
connected component so that results can be compared with the baseline
provided by D-Mercator.

An implementation of FiD-Mercator is publicly available at https://
github.com/networkgeometry/FiD-Mercator.

Embedding of real networks. We gathered ten datasets, which describe
structural connectivity and node features of real networks in various

domains; these range from citation and social networks to goods and
webpage networks. It is noteworthy that a significant portion of the
networks we analyzed are commonly used as benchmarks in machine
learning research16,17,30. Each network is accompanied by descriptive
metadata describing the nodes’ features as the bag-of-words. A non-zero
entry indicates a presence of a given word for the node. For the citation
networks, such asCiteseer or Cora, the node represents a publication, and
a feature vector is the bag-of-words from the abstract of that publication.
On the other hand, for Amazon Photo, the feature vectors are extracted
from the product reviews. Formore details about the datasets please refer
to section “Datasets”. In Table 1, we report global statistics for each
network, including number of nodes and features, average degree,
average number of features per node, and mean clustering coefficient.

We produced three different maps for each network: a FiD-Mercator
embedding that incorporates information about the network topology and
the node features; aD-Mercator embedding that only relies on the network
connectivity structure; and the UMAP projection based solely on the node
vector features. As an example, Fig. 2 shows the three embeddings of the
LastFM network. Visualizations for the rest of the datasets are given in
Supplementary Figs. 12–20.

The noticeable difference of nodes’ layout between the FiD-Mercator
and D-Mercator embeddings, as shown in Fig. 2, can be quantified by
tracking how the global log-likelihood of the embeddings changes during
the maximum likelihood optimization steps. Figure 3a, b (see also Supple-
mentary Figs. 1 and 2) illustrates the time evolution of the global log-
likelihood at each step of the maximum likelihood algorithm. In general,
FiD-Mercator achieves a higher final value of global log-likelihood com-
pared to D-Mercator. Thus, initialization with UMAP can lead to a local
optimum that could improve the results of initializing with LE.

Moreover, we carried out experiments to observe how the nodes’
coordinates change over time. We computed the average of the angular
distances separating the positions of the nodes at t = 0 and every ML step.
Figure 3c, d shows the results for Amazon Photo and LastFM datasets (see
also Supplementary Figs. 3 and 4), where the average is computed for nodes
with k > 2. The figures show that the average angular distance is increasing
over time. However, at some moment, it saturates, meaning that the coor-
dinates of nodeswith k > 2 remain stable. This analysis can be used to assess
how far the embedding is from the initial condition and specifywhen to stop
the maximum likelihood process.

The embeddings can be combined with the probability of connection
in the S2 model to generate synthetic surrogates to be compared with the
original networks, see Fig. 4 and Supplementary Figs. 21–29. One can
observe that both FiD-Mercator and D-Mercator are able to reproduce the
degree distribution, the clustering spectrum, and the average nearest
neighbors degree with high fidelity. However, these embeddings are not
identical and nodes in the FiD-Mercator maps show a greater tendency to
expand and fill in the similarity subspace. In contrast, the UMAP embed-
ding performs poorly in reproducing network properties as expected, since
it contains no information about the network structure. We conclude that
adding node features to network structure did not disrupt the quality of the
model-based hyperbolic embedding in terms of its capacity at explaining
local network topological properties. Next, we are going to explore how
adding features can affect downstream tasks that also depend on the
mesoscopic and global organization of the networks.

Downstream tasks
In this section, we show that enriching network topologywith node features
can have amixed effect depending on how the two are correlated and on the
extent to which each category is relevant for the downstream task to be
performed. Next, we report results for link prediction and node classifica-
tion tasks.

Linkprediction. Given a partially observed network, link prediction (LP)
aims to infer the most likely missing links based on the available ones31.
Typically, absent links are ranked in decreasing order of some likelihood

Fig. 1 | Schematic view on the proposed method FiD-Mercator. First, from the
network we infer the hidden degrees κ and parameter β. Second, we use the UMAP
algorithm tomap the nodes onto the two-sphere using the feature matrix. Lastly, the
initial nodes' coordinates from the last step are used in the maximization likelihood
procedure which tries to fit data to the S2 model. The size of the nodes is propor-
tional to its expected degree and they are colored according to their communities.
Black lines on the two-sphere represent connections produced according to
the model.
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value and those at the top are selected as candidates formissing links. The
likelihood can be estimated based on some heuristic metric given the
patterns of connectivity observed in the network structure or using an
underlying network model. When it comes to graph models that employ
latent space, the task of link prediction essentially involves ranking pairs
of nodes in decreasing order of their connection probability computed
using their latent distances. Results from ref. 32 indicate that as the
complexity of a specific link prediction task increases, the utilization of
hyperbolic geometry should be more seriously considered.

We conducted tests on the link prediction task in two scenarios. In the
first scheme, we randomly removed L = q ⋅ E links from the original graph
with qdefined as the fraction ofmissing links. Then,we used the coordinates
and parameters obtained from the three different embeddings of the com-
pletenetwork to compute the connectionprobability as givenbyS2 (Eq. (1)).

In the second scheme, we selected the giant connected component (GCC) of
the network after removing L links, counted the number of these missing
links L0 within the GCC, and embedded this subgraph to compute the
coordinates of its nodes. We then calculated the likelihood of each non-
existing link in the GCC.

Inboth cases,we sorted the links indecreasing orderof probability, and
selected the top L and L0, respectively, as predicted links. Even though the
Area Under the ROCCurve (AUC) is a popular measure in the literature to
assess the goodness of a link prediction method, the precision is a more
stringentmeasure since it concentrates on the top part of the rankingwhere,
under limited resources, more detection efforts would be directed33–35.
The precision was calculated as the fraction of correctly identified links as
presented in ref. 35.

The results are reported in Fig. 5 and Supplementary Figs. 9 and 10.
Again, UMAP alone performs poorly whereas FiD-Mercator and D-Mer-
cator give improved results. In the first scheme, in seven out of the 10
analyzed real networks FiD-Mercator outperforms D-Mercator by a sig-
nificant amount. In the remaining three networks, the two schemes reach
similar levels of precision. In the second scheme, the overall precision is
lower due to the increased difficulty of the task.We excluded three networks
(Cornell, Wisconsin, and Texas) from this analysis due to their small size
after the removal of links. In three out of the remaining sevennetworks,FiD-
Mercator surpasses D-Mercator, and in two networks, both methods yield
similar results.

The improvement of FiD-Mercator over D-Mercator in the LP
task can only be explained if node features are correlated with the
network topology. To quantify such correlation, we computed the
relative difference between the average cosine similarities of features
of connected nodes in the original network and features of nodes that
were not directly connected (see section “Correlation between nodes’
features and network structure” and Table 1). As one can notice,
higher correlation values for Amazon Photo and DBLP lead to
improvement in the link prediction task. On the other hand, when the
correlation is weak, both FiD-Mercator and D-Mercator perform
similarly, as in the case of the Twitch PTBR dataset.

Node classification. Node classification (NC) is a task where the goal is
to categorize nodes into different sets described by specific labels. The
categories can be based on different sources of information. For each real
network, we considered three different ways of assigning labels to nodes.
• Class: using descriptive metadata, different from features, which

characterizes some aspect that divides nodes in a limited number of
classes, for instance product types, professional roles, research fields, or
film genres. The metadata defining the classes is typically provided
along the network graph. In this partition, we label nodes with the
class names.

Table 1 | Properties of real networks

Network N 〈k〉
--
c NF 〈kF〉 NClass

L NTopology
L NFeatures

L β μ corrðG;FÞ
Citeseer 2110 3.48 0.23 3703 32.06 6 37 4 2.98 0.0375 0.763

Cora 2485 4.08 0.28 1433 18.30 7 27 5 3.23 0.0373 0.650

DBLP 2728 31.44 0.67 2000 42.14 4 18 4 7.21 0.0089 0.506

IMDB 3228 19.46 0.55 2000 76.95 3 27 5 5.12 0.0125 0.172

Amazon Photo 7487 31.8 0.42 745 260.47 8 14 7 3.41 0.0052 0.270

Cornell 184 3.03 0.29 1703 94.20 5 14 4 2.40 0.0200 0.169

Wisconsin 251 3.59 0.28 1703 95.84 5 12 5 2.49 0.0204 0.201

Texas 183 3.05 0.32 1703 83.42 5 12 4 2.24 0.0123 0.116

LastFM 7624 7.29 0.29 7842 395.38 18 29 5 2.96 0.0175 0.465

Twitch PTBR 1912 32.74 0.34 3169 19.88 2 8 5 2.39 0.0018 −0.053

The NF represents the number of features, 〈kF〉 the average number of features per node and NL the number of labels. We used the giant connected component for all networks.

Fig. 2 | Two dimensional maps of the LastFM network. Each row corresponds to
the different embedding methods whereas each column is for a different assignment
of labels. The size of a node is proportional to its expected degree, and its color
indicates the community it belongs to. For the sake of clarity, only the connections
with probability (Eq. (1)) pij > 0.999 are shown.
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Fig. 4 | Validation of the embeddings of the
Amazon Photo network. a shows the com-
plementary cumulative degree distribution andb the
clustering spectrum�cðkÞ. Symbols correspond to the
values in the original network. The lines indicate an
estimate of the expected values in the ensemble of
random networks in the different embeddings. The
S2 model was used to generate 100 synthetic net-
works with the parameters and positions inferred by
FiD-Mercator, D-Mercator, or UMAP. The error
bars show the 2σ confidence interval around the
expected value. c shows the average nearest neigh-
bors degree �knnðkÞ. d displays the comparison of the
expected connection probability based on the esti-
mated β (expected) and the actual connection
probability computed with the inferred hidden
variables.

Fig. 3 | Evolution of FiD-Mercator and D-Merca-
tor embeddings during the maximum likelihood
optimization process. a, b Evolution of the global
log-likelihood during the maximum likelihood
(ML) optimization steps. Each ML step takes a
subset of nodes for which new coordinates are pro-
posed. The nodes are ordered through the onion
decomposition40. Notice that we plot the negative
log-likelihood here, hence the lower the value the
better. c, d The average angular distance between
each node of the initial embedding (forD-Mercator:
Laplacian Eigenmaps; for FiD-Mercator: UMAP)
and the embedding after each ML step. We com-
puted the average angular distance only for nodes
with k > 2.
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• Topology: by leveraging the network topology to construct the
communities of densely connected neighbors. Labels based on
topological communities were produced using the Louvain
method36, which is a greedy modularity optimization technique.
The method is fast and detects the number of communities
without predefining it.

• Features: based on similarities between node features. Feature-based
labels were defined from the UMAP embedding used in FiD-Mercator
to fix the initial conditions. We applied the agglomerative clustering
algorithm from the scikit-learn Python library37 to the UMAP
projection. This algorithm is a bottom up hierarchical clustering
method in which each node starts in its own cluster, and clusters are
successively merged together following a linkage criterium that takes
themean distance between elements of each cluster, also called average
linkage clusteringused inUPGMA38.Thenodes projectedbyUMAP in

close positions of the similarity space, i.e., separated by a small angular
distance, have a tendency to merge into one cluster. To fix the number
of labels in the hierarchical clustering algorithm, we employed the
geometric community concentration measure used in ref. 24. This
measure computes the level of clusterization of nodes in the underlying
two-sphere embedding. The number of clusters is tuned to the one that
produces a maximum value of the geometric concentration measure,
see section “Community concentration” for more details.

Each node in the real networks was, thus, assigned three labels—a class
label, a topological community label, and a feature-based label—one from
each of the three partitionings. This labeling is visualized through color-
coding in Fig. 2, which depicts three different maps of the LastFM network,
and in Supplementary Figs. 12–20 for the remaining networks. It is worth
noting that labels denoting classes and labels basedonnetwork topology and

Fig. 5 | Precision of a link prediction task as a
function of the fraction of missing links in real
networks. a, b Amazon Photo, (c, d) DBLP, and
(e, f) Twitch PTBR. a, c, e show the results for the
scheme inwhich the embeddings are of the complete
network, whereas b, d, f are for the second scheme
embedding the GCC of the incomplete network.
Results are averaged over five different realizations.
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onnode features donot necessarily correlatewith one another. For instance,
the absence of correlation is the reason why the positions of nodes in
different feature-labeled sets overlap in the embeddings obtained by FiD-
Mercator and D-Mercator.

In order to see how the addition of features helps hyperbolic embed-
dingwe need to characterize the level of correlation between the three sets of
labels. For this, we used the Normalized Mutual Information (NMI) to
evaluate the agreement between the labels associated to each node in each
class. Results are reported in Fig. 6a, c, e and in Supplementary Figs. 7 and 8.
There is always a significant amount of correlation between the labels.
However, particular associations are more significant in specific real net-
works. For instance, all correlations are more important in Amazon Photo
as compared to Wisconsin; in LastFM the association between classes and
topology-based communities is higher than between classes and feature-
based groups. Contrarily, Wisconsin exhibits the reverse trend, with classes
being highly correlated with labels derived from features.

To evaluate the significance of the observed correlations, we calculate
the z-score between two sets of labels. This measure compares the NMI of
the original label sets with the NMI obtained when one set of labels is
shuffled. A higher z-score indicates a more significant correlation between
the two sets of labels (see section “z-score”). In all the analyzednetworks, the
observed correlations are significant (z-score > 5), except for the Texas and

Cornell datasets, where the correlation between the classes and the
topology-based communities is not statistically relevant.

These correlations explain the performanceof anode classification task
defined on real network embeddings for the different labeling protocols (we
omitted the evaluation of classifying feature-based labels in UMAP
embeddings since those labels were crafted from that embedding). First, we
split thenodes into training and test sets. The popular choice is 80%of nodes
into the training set and the rest 20% into the test set39. Using the infor-
mation of node labels in the training set, we predicted the labels of nodes in
the test set using the KNeighborsClassifier from the scikit-learn library37.
This neighbors-based classificationmethod assigns the data category which
has the most representatives within the k nearest neighbors of the node. In
our experiments, we set k = 5 (we also checked k = 10, which gave similar
results) and used the angular distance between the nodes in the similarity
subspace as the metric to define nearest neighbors. The results were aver-
aged over 5 train-test splits.

Heatmaps showing the achieved accuracy in predicting the nodes’
labels of Amazon Photo, LastFM andWisconsin are shown in Fig. 6b, d, f.
The results for the remaining networks are shown in Supplementary Fig. 11.
When the classes are correlatedwith the topology-based communities, FiD-
Mercator tends to improve the accuracy in assigning classes to nodes as
compared toD-Mercator andUMAP (Fig. 6b, d, f, first column).Moreover,

Fig. 6 | Correlation between node labeling and
accuracy in node classification task.
a, c, e Normalized mutual information (NMI)
between each of two different sets of labels. The
value in bracket represents the z-score which
quantifies the significance of the correlation between
two label sets. A higher z-score indicates a stronger
and more statistically significant correlation
between the two sets of labels (see section “z-score”).
The width of the line is proportional to NMI.
b, d, fAccuracy heatmaps of node classification task.
Each row represents a different embedding method,
whereas each column a different set of labels. In
brackets, the number of labels is shown. The per-
formance of node classification on shuffled labels are
displayed in brackets as the second row in each
entry. Train-test size split: 80/20. Results are aver-
aged over 5 different train-test splits.
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FiD-Mercator outperforms in correctly classifying topology-based labels
(Fig. 6b, d, second column). On the contrary, when there is a lack of cor-
relation between the two categories, D-Mercator performs better (Fig. 6f,
second column). The FiD-Mercator embedding achieves higher accuracy
when predicting labels constructed from features, as shown in Fig. 6b, d
(third column). Furthermore, when classes correlate with feature-based
labels, incorporating node features into the embedding method enhances
accuracy,which alignswith expectations. This is illustrated in Fig. 6b, d (first
column). In all cases, UMAP achieves low accuracy predicting nodes’ labels
when the correlation between classes and feature-based groups is weak, and
performs very poorly in classifying on topology-based communities. It is
worth mentioning that for all embedding methods, the accuracy is higher
than in randomized surrogates, in which the labels were shuffled, i.e., ran-
dom assignment of the labels, while keeping the original number of
communities.

All together, the experiments demonstrate a nuanced effect of incor-
porating feature data into network structure for node classification tasks
based on geometric network embeddings. It can be detrimental when the
correlation between features and topology is very low.However, when there
is a high correlation between network connectivity and features, adding
them significantly enhances the results.

Versatility. To clarify whether incorporating features into the embedding
method provides an advantage in a variety of tasks, we show in Fig. 7 the
improvement in LP offered by FiD-Mercator over D-Mercator as a
function of the improvement in NC using feature-based labels, for all
datasets. In 60% of the real networks the benefit is obvious in both tasks,
while in three out of 10 networks the results for LP, but not for NC, are
slightly worse and in one network the result for NC, but not for LP, is
slightly negative. Taken together, these results suggest that feature-aware
embedding methods can improve a variety of downstream tasks beyond
the ones explored here.

Discussion
Real-world complex networks are typically represented as graphs where
connections are often enriched with attributes, such as the intensities of the
interactions or their directionality. These attributes are incorporated in the
network analysis process to obtain a better approximation to the actual
behavior of the system. However, when node descriptivemetadata different
from connectivity is available, in the form of node features describing their
qualities (e.g. in social systems, age, gender, interests, background, and other
social determinants), the common practice in network science is to not

incorporating it into the analysis but to use the information as an external
source of verification. For instance, in validating aggregation methods like
community detection, determining node categories based on network
structure. By contrast, advanced machine learning techniques in computer
science, for instance many deep neural networks, incorporate information
about both network structure and node features. In this case, the difficulty
comes from the fact that the approaches are data-driven and the methods
are black boxes in which the blending process becomes opaque and it is
impossible to discern the precise role of every contributing factor.

In this work, we surmount these drawbacks and merge network
structure with node features in a model-based environment to obtain a
more advantageous ultra-low dimensional reduction technique for real
networks. This hybridization technique, that we named FiD-Mercator,
produces D-dimensional geometric representations of real networks in
hyperbolic space. The features determine a convenient initial condition
to guide more efficiently the embedding of the network topology toward
a better local optimum. The relative attention paid to the network
structure versus the features can be controlled by early stoppage guided
by the evolution of the log-likelihood function. As a result, the hybri-
dization reveals a different type of spatial description by implementing a
different inductive bias, that is, by considering a set of assumptions that
involve both features and network structure simultaneously, and inde-
pendently of whether those are or not correlated. Moreover, we found
that adding node features to network structure does not disrupt the
quality of the hyperbolic embedding in terms of its capacity at explaining
local node properties, determining the degree distribution or the clus-
tering spectrum.

However, its impact can varydependingon the correlationbetween the
two and the relevance of each piece of information to a specific downstream
task. In linkprediction, themajor improvement ofFiD-Mercator is achieved
in cases when the correlation is high but not perfect. Perfect correlation
means that the information contained in the nodes’ features would be
redundant. Instead, high correlation below one implies that there is new
information encoded in the features that can be used to infer structural
properties of the network. When the correlation is very low, features and
network connectivity are hardly related and the prediction of missing links
cannot benefit from adding features. This suggests that there is an optimal
correlation value for which better results are obtained. For node classifica-
tion tasks, adding features can be detrimental when the correlation between
features and topology is very low. In contrast, adding features significantly
enhances the results when the correlation is high.

Nevertheless, there may be tasks where adding features is not
optimal, independently of the level of correlation, which is difficult to
know a priori. Other open questions for future research are how to
smartly filter the set of features to adjust the correlation between features
and network connectivity for optimal task performance, and the effects
of incorporating non-binary features into the analysis, which could be
easily mapped with UMAP. In any case, our results indicate that, overall,
features are in general correlated with network connectivity and that the
level of correlation is a good indicator of their relevance to improve
many downstream tasks based on geometric network embeddings. This
emphasizes the need for the development of new network embedding
techniques that simultaneously optimize the joint probability of network
structure and feature association in the near future.

Methods
S2 model
In theS2 model, a node i is endowed with a hidden degree κi and a position
in the 2-similarity space, vi = {xi, yi, zi} with ∣∣vi∣∣ = RwhereR is the radius of
the two-sphere. The connection probability between a node i and a node j
has form:

pij ¼
1

1þ χβij
; with χij ¼

RΔθijffiffiffiffiffiffiffiffiffiffiμκiκj
p : ð1Þ

Fig. 7 | The difference of precision and accuracy between the FiD-Mercator and
D-Mercator for real networks. For link prediction the precision was computed at
0.25 fraction of missing links. For node classification the accuracy was calculated for
feature-based labels. Train-test size split: 80/20. Results are averaged over five dif-
ferent train-test splits.
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We fix the density of nodes in the two-sphere to one so that:

R ¼
ffiffiffiffiffi
N
4π

r
ð2Þ

where N is the number of nodes. The angular distance is defined as
Δθij ¼ arccos

vi�vj
R2

� �
. The parameter β > 2, named inverse temperature,

controls the clustering in the network. Finally, the parameter μ controls the
average degree of the network and is defined as:

μ ¼
β sin 2π

β

2π2hki :
ð3Þ

The hidden degrees can be generated randomly from an arbitrary
distribution, or taken as a set of prescribed values. The model has the
property that the expected value of the degree of a nodewith hidden variable
κ is �kðκÞ ¼ κ.

The FiD-Mercator algorithm
For a complete description of the inference of the hidden degrees and
parameter β, the likelihood maximization and technique, and the final
adjustment of hidden degrees please refer to ref. 24.

Inferring the hidden degrees and parameter β. The inference of the
hidden degree and the inverse temperature β is implemented as an
iterative process. We start with the approximate guess for β∈ (2, 3) and
initialize the hidden degrees as the observed degrees {ki, i,…,N} in the
original network. The estimation aims to adjust the hidden degrees such
that the expected degree of each node in the model matches the observed
degree in the original network. After the hidden degrees are computed,
the theoretical mean of the local clustering coefficient of networks in S2

ensemble can be evaluated. If its value varies from the original network,�c,
the value of β is adjusted. Then the process is rerun using the current
estimation of hidden degrees until a predetermined precision is reached.

Initial embedding of the nodes from UMAP. The UMAP takes as the
input the nodes’ features matrix N ×Nf with the distance metric. In our
case, we use theHaversinemetric, which is designed to calculate distances
on a spherical surface. This process positions the nodes within the
embedding space. For more details about the UMAP algorithm, see
section “The UMAP algorithm”.

Likelihoodmaximization. The nodes’ coordinates in the similarity space
inferred using UMAP are fine-tuned by Maximum Likelihood Estima-
tion (MLE) to optimize the probability that the observed network is
generated by the S2 model. Nodes are visited sequentially by the net-
work’s onion decomposition40. For each node, we propose the candidate’s
positions near its neighbors. The most favorable proposed position, i.e.,
maximizing the local log-likelihood, is selected, and the process is repe-
ated until the local log-likelihood function reaches a plateau.

Final adjustment of hidden degrees. Lastly, we correct the hidden
degree to compensate deviations from �kðκiÞ ¼ κi, whichmight have been
introduced in estimating the coordinates of nodes in the similarity spaces.

The UMAP algorithm
UMAP (Uniform Manifold Approximation and Projection)28 is a dimen-
sion reduction technique. Bydefault, it embedsdata inEuclidean space. This
is a convenient and widely used option for visualization and clustering41,42.
However, there are no significant constraints that prevent the algorithm
from working with non-Euclidean spaces.

UMAP allows you to choose the dimension of the embeddings. We
have verified that with D = 1 performs poorly because we first need to map
the nodes to a 2D plane and then place them on a circle. As this procedure
mixes communities, we chose D = 2 for UMAP dimension.

UMAPmaps thenode feature vectorson topof the2-sphere,which can
be treated as a similarity space of the S2 model. It is worth noting that the
UMAP algorithm is unsupervised, meaning it does not require any node
labels.

The UMAP algorithm, being stochastic, can produce different results
in various runs.While the inferredpositions of the nodesmight slightly vary
between these runs, our tests, involving running theUMAPalgorithm twice,
indicate that the obtained embeddings lead to consistent results in
downstream tasks.

Correlation between nodes’ features and network structure
Let us define a complementary graph of the network topology, G0 ¼
ðV; E0Þ with E0 � fðu; vÞ j u; v 2 V and ðu; vÞ =2Eg where V is the set of
nodes in the original network and E0 is a set of edges non-existing in
the original network. Computing cosine similarity between all non-
existing links in G is computationally expensive due to its sparsity. As
an alternative, we randomly selected ∣E∣ edges from the com-
plementary graph and averaged the results over five realizations of the
selection process for further analysis.

For each realization, we computed the average cosine similarity
between connected nodes in graph G and between node pairs in the selected
samples of G0. The relative difference between them quantifies the strength
of the correlation between the nodes’ features and the networks structure:

corrðG; FÞ ¼ CSðGÞ � CSðG0
EÞ

CSðGÞ : ð4Þ

The higher the obtained value themore correlated are features with the
network topology.

Community concentration
Introduced in ref. 24, the geometric concentration of a community l around
a node i has a form:

ρi;l ¼
ni;l
ni;g

N
NL

; ð5Þ

where ni,l is the number of nodes in community l out of ni,g considered
nodes, and NL is the total number of nodes in community l. We define
ni,g as top geometrically closest neighbors. The single scalar ρ for a
given network embedding is averaged over all nodes in the same
community. Finally, we calculated the community concentration as
cC = ρ(ni,l = N/10), i.e., the geometric concentration at 10% of top
geometrically closest nodes.

z-score
Tomeasure the significance of the correlation between two sets of labels, we
used z-score. Let us define the quantity:

z - score ¼ NMIðX;YÞ �NMIðX;YÞrand
σðNMIðX;YÞrandÞ

; ð6Þ

where X and Y are sets of labels. We compute the random case of by
comparing setXwith a shuffled version of setY, and this process is repeated
100 times. Thehigher z-score themore significant is the correlation between
two sets of labels.

Datasets
In this work we analyzed ten networks from different domains. Their
properties are summarized in Table 1. For each dataset, the nodes’ feature
vector is a high-dimensional vector containing 0s or 1s, i.e., the presence or
absence of a given feature:
• Citeseer43: the citationnetworkofMachineLearningpaperswhere each

publication is described by a 0 or 1 valued word vector indicating the
absenceor thepresence of the correspondingword from thedictionary.
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The dictionary consists of 1433 unique words. The publications are
classified into six classes.

• Cora44: similar toCiteseer, however the publications are split into seven
classes: Case Based, Genetic Algorithms, Neural Networks, Probabil-
istic Methods, Reinforcement Learning, Rule Learning, Theory.

• DBLP45: the citation network of Machine Learning papers. Nodes are
classified into four classes: Data Mining, Artificial Intelligence, Com-
puter Vision and Natural Language Processing.

• IMDB45: the Movie-Actor-Movie relation dataset. Movies are
categorized into three classes (Action, Comedy, Drama).

• Amazon Photo46: nodes represent goods and edges represent that two
goods are frequently bought together. The node features are bag-of-
words encoded product reviews, and class labels are given by the
product category.

• Cornell,Wisconsin, Texas47: web graphs crawled from threeComputer
Science departments in 1998, with each page manually classified into
one of seven categories: course, department, faculty, project, staff,
student, or other.

• LastFM48: a social network collected from the public API in March
2020. Nodes are LastFM users from Asian countries and edges are
mutual follower relationships between them. The vertex features are
extracted based on the artists liked by the users. This node label was
derived from the country field for each user.

• Twitch PTBR49: user-user networks of gamers who stream in
Portuguese language. Nodes are the users themselves and the links
are mutual friendships between them. Vertex features are extracted
based on the games played and liked, location and streaming habits.
The node labels represent whether a streamer uses explicit language.

Data availability
The network datasets used in this study are available from the sources
referenced in the manuscript and the Supplementary Materials.

Code availability
The open-source code of FiD-Mercator is available on GitHub at https://
github.com/networkgeometry/FiD-Mercator.
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