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Geometric description of clustering in 
directed networks

Antoine Allard    1,2  , M. Ángeles Serrano    3,4,5 & Marián Boguñá    3,4

First-principle network models are crucial to understanding the intricate 
topology of real complex networks. Although modelling efforts have been 
quite successful in undirected networks, generative models for networks 
with asymmetric interactions are still not well developed and unable to 
reproduce several basic topological properties. Progress in this direction 
is of particular interest, as real directed networks are the norm rather 
than the exception in many natural and human-made complex systems. 
Here we show how the network geometry paradigm can be extended to 
the case of directed networks. We define a maximum entropy ensemble of 
random geometric directed graphs with a given sequence of in-degrees and 
out-degrees. Beyond these local properties, the ensemble requires only two 
additional parameters to fix the levels of reciprocity and the frequency of the 
seven possible types of three-node cycles in directed networks. A systematic 
comparison with several representative empirical datasets shows that fixing 
the level of reciprocity alongside the coupling with an underlying geometry 
is able to reproduce the wide diversity of clustering patterns observed in real 
directed complex networks.

The network geometry paradigm is a comprehensive framework that 
successfully explains the topology, the multiscale organization and 
the navigability of real complex networks1. This framework consists of 
a handful of simple models and has been shown to accurately model 
several features observed in static, growing, weighted or multilayer 
networks2–8. The hallmark of network geometry is how it naturally repro-
duces the clustering patterns observed in real complex networks as one 
of their most fundamental properties9. Clustering is indeed notoriously 
difficult to model because triangles imply three-node interactions, 
and most existing approaches must rely on approximations (such as 
an underlying tree-like organization10–15), give up sparsity16 or turn to 
numerical simulations17–19.

Network geometry overcomes this difficulty by assuming that 
nodes are embedded in a metric space and that the probability pij 
that a link exists between nodes i and j is a decreasing function of 
the distance between them. Non-fortuitous clustering—clustering  
that does not occur by sheer luck—can therefore be seen as the 

topological counterpart of the triangle inequality of the metric 
space: if nodes j and l are both close to node i, then they must also 
be close to each other. Hence, a triangle composed of nodes i, j and 
l is likely, even in the limit of very large networks. In fact, network 
geometry interprets the clustering coefficient as a measure of the 
coupling between the topology of the network and an underlying  
latent metric space.

To date, however, network geometry has only been fully devel-
oped for complex networks with symmetric interactions, weighted or 
unweighted. Yet, a large number of real complex networked systems 
contain a mixture of symmetric and asymmetric interactions (for 
example, connectomes, food webs and communication networks)9,20,21. 
In addition to the ubiquity of asymmetry, such systems are relevant 
because they represent processes out of equilibrium where detailed 
balance is not fulfilled. These systems are also typically non-normal20 
and display trophic coherence22 (or lack thereof); these features have 
a drastic impact on the systems' dynamics that cannot be foreseen 
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Results
The directed 𝕊𝕊1 model
We introduce a generalization of the 𝕊𝕊1 model2 to directed networks; 
this directed 𝕊𝕊1 model generates networks with nontrivial levels of 
clustering, even in the limit N → ∞. However, note that this extension 
to directed networks generates reciprocal links only by chance. In sub-
sequent sections, we introduce the general framework that allows for 
control of the level of reciprocity and then combine the two approaches 
to propose the definitive formulation of the directed-reciprocal 𝕊𝕊1 
model.

The ensemble of random directed networks defined by the 
directed 𝕊𝕊1 model consists of N nodes positioned on a circle of radius 
R = N/2π (thus setting the density of nodes to 1 without loss of gen-
erality). Each node i is independently and identically assigned an 
angular position θi and a pair of hidden degrees κ−i  and κ+i  which, as 
shown below, are related to each node’s in-degree and out-degree, 
respectively. The angular positions are random variables distributed 
according to the uniform probability density function (pdf )  
φ(θ) = 1

2π
, although other densities—for instance, to include com-

munity structure37–39—could be considered. The hidden degrees are 
random variables distributed according to the joint pdf ρ(κ−, κ+), 
whose exact form is a free parameter of the model. The only con-
straint imposed on ρ(κ−, κ+) is that its two first moments coincide, 
that is, ⟨κ−⟩ = ⟨κ+⟩ ≡ ⟨κ⟩ . This constraint ensures that ⟨k−⟩ = ⟨k+⟩ , 
which must be true for any directed network. Note that we can also 
consider another formulation of the model in which the angular 
positions and hidden degrees are fixed—they become parameters of 
the model—instead of being random variables with a specified pdf. 
This formulation is convenient when adjusting the model to real 
network datasets (see ‘Modelling real directed complex networks’) 
and facilitates various analytical calculations (Supplementary Infor-
mation Section II).

A directed link exists from node i to node j with probability

P (aij = 1 | κ+i , κ
−
j ,Δθij) =

1
1 + χβ

ij

(1a)

with

χij =
RΔθij

μκ+i κ
−
j
=

NΔθij

2πμκ+i κ
−
j
, (1b)

where Δθij = Δθji = π − ∣π − ∣θi − θj∣∣ is the minimal angular distance 

between nodes i and j and μ = β
2π⟨κ⟩

sin( π
β
) with β > 1 is a parameter of 

the model that controls clustering, as we explain below. Two links 
therefore exist independently from one another, or their exist-
ence may be conditionally independent if they have a node in 

if the directionality of the interactions is simply neglected20,21,23–29. 
Although extensions have recently been explored30–34, the apparent 
contradiction between the symmetry of metric distances and asym-
metric interactions has kept this important class of systems out of the 
reach of the network geometry framework.

In this Article we propose a simple solution to this impasse. By 
rethinking the relationship between distance and connection, we 
introduce the directed-reciprocal 𝕊𝕊1 model, a general and versatile 
adaptation of the framework of network geometry that reconciles the 
intrinsic symmetry of metric distances with asymmetric interactions 
between nodes in directed networks. Our model is able to reproduce 
the joint distribution of both in-degrees and out-degrees, and the 
model has an additional parameter that tunes the level of reciprocity, 
that is, the propensity for the two different directed links to exist 
between the same pair of nodes, a fundamental property of real 
directed networks35,36 (Fig. 1). Our model is also amenable to several 
analytical and semi-analytical calculations. We also provide a more 
general probabilistic formulation of our framework that can be adapted 
to control the level of reciprocity in any non-geometric model as long 
as it defines pairwise connection probabilities.

Most importantly, we use the directed-reciprocal 𝕊𝕊1 model to show 
that even the more complex patterns of clustering in directed net-
works—quantified by the relative occurrences of the seven triangle 
configurations possible with directed links or triangle spectrum  
(Fig. 2a)—are in fact a byproduct of the joint distribution of in-degree 
and out-degree, of reciprocity and of the triangle inequality in the 
underlying metric space. Our contribution offers a rigorous path to 
extend network geometry to directed networks, thus allowing this 
powerful approach to be used to study real complex systems where 
asymmetric interactions are crucial, like the brain, food webs, informa-
tion networks and human interactions.

The directed-reciprocal 𝕊𝕊1  model consists in combining  
two original frameworks: a geometric framework that controls  
clustering and a probabilistic non-geometric framework that controls 
reciprocity. In what follows, we first introduce these two frameworks 
individually, we then combine them to form the directed-reciprocal 
𝕊𝕊1  model, which we finally use to model real directed complex 
networks.
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Fig. 1 | Reciprocity in real directed networks. Reciprocity versus density of 
triangles in 292 real directed biological (Biol.), economical (Econ.), information 
(Inform.), social, technological (Techno.) and transportation (Transp.) networks. 
The reciprocity is defined as r = L↔/L, where L↔ is the number of reciprocal links 
and L is the number of links. The density of triangles is computed as the average 
local clustering coefficient of the undirected projection of the original directed 
network ̄cundir (Methods). Details about the network datasets are provided in  
the Methods.
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Fig. 2 | Illustrations of the concepts behind the modelling framework.  
a, The seven configurations of triangles in directed networks45,47. b, The joint 
probabilities Pij(aij, aji) used in the general framework controlling reciprocity in 
random directed networks. c, The geometric directed soft configuration model 
where pij denotes the probability of connection P(aij = 1 | κ+i , κ

−
j ,Δθij) of  

equation (1a).
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common (Supplementary Information Section II.A gives a complete  
discussion). Figure 2c provides an illustration of the model.

The choice of equation (1a) has two advantages. First, fixing the 
hidden degrees κ− and κ+ allows specifying the expected in-degree and 
out-degree of each node and thus the expected joint in- and out-degree 
distribution. As shown in Supplementary Information Sections II.B and 
II.C, the expected in-degrees and out-degrees of nodes with hidden 
variables κ−i  and κ+i  are simply given by

⟨k−i | κ
−
i ⟩ ≃ κ−i and ⟨k+i | κ

+
i ⟩ ≃ κ+i . (2)

Second, it casts the ensemble of random networks generated by the 
model into a hyper-grand-canonical ensemble, which is a prime  
candidate to be the unbiased maximum entropy spatial network model 
for sparse heterogeneous small worlds with nonzero clustering5. The 
generalization of the 𝕊𝕊1 model presented here recovers the directed 
soft configuration model in the limit β → 0 (Methods) but unlike its 
non-geometric counterpart, it has a nonvanishing clustering in the 
limit N → ∞ (due to the triangle inequality of its embedding space). As 
in the undirected 𝕊𝕊1 model, clustering in this generalization is tuned 
using the parameter β; the limit β → ∞ yielding the highest density of 
triangles, while clustering goes to zero when β = 1. The detailed deriva-
tion of these results as well as their validation using numerical simula-
tions are provided in Supplementary Information Section II.

We set clustering aside to introduce a second framework that 
generates directed networks with a given level of reciprocity.

Reciprocity in random directed networks
We introduce a general framework to control the level of reciprocity 
in any random directed network models with pairwise connection 
probabilities. Let pij be the probability for a directed link to exist from 
node i to node j and N be the number of nodes. The assumption that 
interactions are pairwise implies that the existence of links between 
two different pairs of nodes, i, j and k, l, are statistically independent 
events. If this condition also applies to the two possible links between 
the same pair of nodes i, j, then the probability to have a reciprocal link 
is simply pijpji. Defining these pairwise probabilities generates a certain 
level of reciprocity in the network, although it is not possible to tune it.

To gain control over reciprocity, we must relax the assumption 
of independence of pij and pji in a pair of nodes. Thus, similarly to the 
seminal dyad independence model40, our framework focuses on the 
four ways two nodes may or may not be connected (Fig. 2b). We define 
the joint probabilities Pij(aij, aji) with 1≤i < j≤N and where aij is 1 if there 
is a directed link from node i to node j and 0 otherwise. For our frame-
work to be coherent with the model defining the pairwise connection 
probabilities, we impose that the joint probability Pij(aij, aji) preserves 
the marginal connection probabilities so that

Pij(1,0) + Pij(1, 1) = pij, (3a)

Pij(0, 1) + Pij(1, 1) = pji (3b)

and we assume that they are normalized, that is,
1
∑
aij=0

1
∑
aji=0

Pij(aij,aji) = 1 (4)

for every pair (i, j). Equations (3a), (3b) and (4) leave one of the four 
probabilities Pij(aij, aji) undefined, giving the model an extra degree 
of freedom to fix the reciprocity of the network. This can be done by 
considering the correlation coefficient

ρij =
⟨aijaji⟩ − ⟨aij⟩ ⟨aji⟩

√(⟨a2
ij⟩ − ⟨aij⟩

2) (⟨a2
ji⟩ − ⟨aji⟩

2)
(5a)

=
Pij(1, 1) − pijpji

√pij(1 − pij)pji(1 − pji)
(5b)

where ⟨⋅⟩ corresponds to an average over the network ensemble defined 
by the joint probabilities. Note that because Pij(1, 1) ∈ [0,1], equation (5) is  
not guaranteed to be bounded between −1 and 1. Enforcing these bounds 
yields an expression for Pij(1, 1) in terms of pij, pji and a parameter ν ∈ [−1,1] 
controlling the level of reciprocity between nodes i and j

Pij(1, 1)

= {
(1 + ν)pijpji + ν(1 − pij − pji)H(pij + pji − 1) for − 1 ≤ ν ≤ 0

(1 − ν)pijpji + νmin {pij,pji} for 0 ≤ ν ≤ 1,
(6)

where H( ⋅ ) is the Heaviside step function (a detailed derivation is pro-
vided in Supplementary Information Section I). For instance, the cases 
ν = 1, 0, and −1 correspond, respectively, to the highest level of reciproc-
ity that is structurally possible, random reciprocity (that is, directed 
links exist in both directions with probability pijpji) and anti-reciprocity 
meaning the minimum level of reciprocity achievable given the joint 
probabilities. Note that fully reciprocal networks (r = 1) are only pos-
sible when ν = 1 and pij = pji for every pair of nodes i and j.

Alongside equations (3a), (3b) and (4), equation (6) fully defines 
the four joint probabilities Pij(aij, aji) prescribing how nodes i and j are 
connected and thus the level of reciprocity in the network ensemble. 
The latter can be made explicit by computing the expected reciprocity36

⟨r⟩ = ⟨L
↔

L ⟩ ≈ ⟨L↔⟩
⟨L⟩ =

⟨k↔⟩
⟨k+⟩

, (7)

where L is the number of links, L↔ is the number of links that are recip-
rocated (that is, a directed link that has another link in the opposite 
direction),

⟨k+⟩ = ⟨k−⟩ = 1
N

N
∑
i=1

N
∑
j=1
j≠i

pij (8)

is the expected degree (in or out) and

⟨k↔⟩ = 2
N

N
∑
i=1

N
∑
j=i+1

Pij(1, 1) (9)

is the expected reciprocated degree.
Having introduced these two frameworks, we now combine them 

into the definitive formulation of the directed-reciprocal 𝕊𝕊1 model.

The directed-reciprocal 𝕊𝕊1 model
As mentioned previously, the directed 𝕊𝕊1 model generates reciprocal 
links by chance, that is, when two directed links happen to exist in 
opposite directions between a given pair of nodes. We found, however, 
that although Fig. 1 shows that reciprocity and the density of triangles 
are somewhat correlated in real directed complex networks, relying 
on luck does not allow the accurate reproduction of the levels of reci-
procity found in most real network datasets. In other words, once 
{κ−i }i=1,…,N

 and {κ+i }i=1,…,N
 have been set to reproduce the joint degree 

sequence and β has been chosen to reproduce the density of 
triangles, an additional parameter is required to accurately tune the 
level of reciprocity to march the level in a real directed complex network 
targeted for study.

The directed-reciprocal 𝕊𝕊1 model is the combination of the two 
modelling frameworks defined in the previous sections. Combining 
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equations (1a) and (6) fixes Pij(1, 1), which in turn fixes Pij(1, 0) and Pij(0, 1) 
via equations (3a) and (3b). Finally, asking for normalization sets 
Pij(0, 0). The parameter ν can therefore serve as the extra parameter 
required to control the level of reciprocity.

Figure 3 illustrates the range of reciprocity that can be obtained 
with the directed-reciprocal 𝕊𝕊1 model as well as with the directed soft 
configuration model, which corresponds to the limit β → 0 (ref. 41). In 
both Fig. 3a and Fig. 3b, nodes were distributed homogeneously at 
random on the circle and assigned hidden degrees. In Fig. 3a, the 
in-degrees and out-degrees are fully correlated—so that κ+i = κ−i ∀i—
while in Fig. 3b they are uncorrelated. Links were then added randomly 
according to the joint probabilities Pij(aij, aji) defined by equations (1a), 
(3a), (3b), (4) and (6). Figure 3 illustrates the effect that both the param-
eter β and the correlation between κ− and κ+ have on reciprocity. Indeed, 
we note that stronger correlations between κ− and κ+ and larger values 

of β both yield networks with a higher reciprocity. To understand this 
interplay, we introduce κij = κ+i κ

−
j  and use equation (1a) to rewrite 

equations (6)–(9) as

⟨r⟩ ≈
⟨k↔⟩
⟨k+⟩

= {
(1 + ν) ⟨r | ν = 0⟩ − ν ⟨r | ν = −1⟩ for − 1 ≤ ν ≤ 0

(1 − ν) ⟨r | ν = 0⟩ + ν ⟨r | ν = +1⟩ for 0 ≤ ν ≤ 1
(10a)

with

⟨r | ν = +1⟩ ≃ 1
⟨κ⟩2

⟨min {κij, κji}⟩ , (10b)

⟨r | ν = 0⟩ ≃ 1
⟨κ⟩2

⟨κijκji
κβ−1
ij − κβ−1

ji

κ β
ij − κβ

ji

⟩ , (10c)

and

⟨r | ν = −1⟩ ≃ sin(π/β)
⟨κ⟩2(π/β)

⟨ f(κij, κji,β)⟩, (10d)

where f(κij, κji, β) is a symmetric function with respect to κij and κji  
and an increasing function with respect to β. A detailed derivation  
of these equations is provided in Supplementary Information  
Section II.F. Equation (10a) already explains the observed linear  
behaviour with parameter ν, although with two different slopes  
for positive or negative values.

Regarding the dependence on parameter β and in- and out-degree 
correlations, first, we observe that equation (10b) does not depend on 
β and therefore that maximal reciprocity—reached at ν = 1—only 
depends on the correlation between κ− and κ+. This observation is 
confirmed in Fig. 3. Equation (10b) also confirms our previous observa-
tion that fully reciprocal networks (that is, r = 1) can only be expected 
when P(aij = 1|κ+i , κ

−
j ,Δθij) = P(aji = 1|κ+j , κ

−
i ,Δθij)  which implies that 

κ− and κ+ are fully correlated (that is, κ−i = κ+i  for i = 1, …, N). Any weaker 
correlation will imply a lower reciprocity since the step functions will 
oversample min {κij, κji} leading to the right-hand side of equation (10b) 
being less than 1.

Second, we observe in Fig. 3 that larger values of β allow for  
higher levels of reciprocity. This can be understood by noting that 
equation (1a) becomes a step function as β → ∞. In this limit, any pair of 
nodes i and j for which max {χij, χji} < 1  will be connected by a reci
procal link with probability 1. As β decreases, this probabilities for these 
same pairs of nodes will also decrease, and this drop in likelihood will 
not be compensated by the fact that reciprocal links between pairs of 
nodes with larger χij or χji are becoming likelier (equation (1a) decreases  
too quickly). As a consequence, the reciprocity increases with β.  
This relationship becomes explicit when κ− and κ+ are fully correlated 
(that is, κij = κji) as equation (10c) becomes ⟨r | ν = 0⟩ ≃ 1 − 1/β.

Modelling real directed complex networks
We now explore the capacity of the directed-reciprocal 𝕊𝕊1 model to 
reproduce the structure of real directed complex networks, most nota-
bly their level of reciprocity and their clustering patterns (Fig. 2a). 
Inspired by the parameter inference procedure of ref. 42, we designed 
an inference algorithm for the 2N + 2 parameters—{κ−i , κ

+
i }i=1,…,N

, β and 
ν— so that the directed-reciprocal 𝕊𝕊1 model reproduces, on average, 
the joint in- and out-degree sequence, the reciprocity and the density 
of triangles (regardless of their configuration) of an original real 
directed complex network (2N + 2 constraints). These 2N + 2 parameters 
are inferred when averaging over all possible angular positions (assum-
ing a uniform pdf), meaning that angular positions {θi}i=1,…,N  are not 
inferred. A detailed description of the inference algorithm is provided 

–1.0 –0.5 0 0.5 1.0
ν

–1.0 –0.5 0 0.5 1.0
ν

Fully correlated κ− and κ+

Uncorrelated κ− and κ+

Directed-reciprocal   1 model with β = 3.2

Directed-reciprocal   1 model with β = 2.4

Directed-reciprocal   1 model with β = 1.6

Directed-reciprocal soft CM (β → 0)

0

0.2

0.4

0.6

0.8

1.0

a

b

Re
ci

pr
oc

ity
 〈r

〉

0

0.2

0.4

0.6

0.8

1.0

Re
ci

pr
oc

ity
 〈r

〉

Fig. 3 | Validation of the general framework controlling reciprocity.  
a, Reciprocity versus its control parameter v, setting k−i = k+i  for i = 1, …, N to fully 
correlate κ− and κ+. b, Reciprocity versus its control parameter v, shuffling the 
sequence {k+i }i=1,…,N

 used in a to decorrelate κ− and κ+. We consider both the 
directed-reciprocal soft configuration model (Methods) and the directed-
reciprocal 𝕊𝕊1 model (main text). Each symbol shows ⟨r⟩ estimated from 100 
random synthetic networks composed of N = 2,500 nodes. Solid lines show the 
predictions of equations (6)–(9). Error bars show the estimated 95% confidence 
interval (almost always smaller than the width of the solid lines). To highlight the 
dependency of ⟨r⟩ on β and on the correlation between κ− and κ+, we drew a 
sequence {κ−i }i=1,…,N

 from the pdf ρ(κ) ∝ κ−2.5 with 5 < κ < 100 and a sequence 
{θi}i=1,…,N  from the pdf φ(θ) = 1

2π
. All symbols and lines were obtained using 

these two sequences.
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in Supplementary Information Section IV, and its implementation in 
C++ is publicly available (Methods).

We ran our algorithm on more than two dozen representative 
datasets from the Netzschleuder network catalogue and repository 
(https://networks.skewed.de). The results for nine of the datasets are 
shown in Fig. 4. Figure 4a shows the ability of our model to reproduce 
the reciprocity and the number of triangles. Figure 4b–d provides a 
representative illustration of the excellent agreement between the 
local properties of networks generated by our model, the in- and 
out-degree sequence and those of the real counterpart. Beyond the 
degree sequences, Fig. 4d shows that the model reproduces the 
observed correlations between in-degrees and out-degrees. This agree-
ment is somewhat expected given that 2N parameters are dedicated 
to fixing the expected in-degrees and out-degree of each node. The 
most striking result, however, consists in the accuracy with which the 

directed-reciprocal 𝕊𝕊1 model can reproduce the variety of clustering 
patterns observed in a wide range of real directed complex networks 
(that is, their triangle spectrum). Indeed, Fig. 4e–m, as well as Sup-
plementary Information Fig. 4, show that only two parameters are 
necessary to match the observed reciprocity and nontrivial clustering 
patterns. Therefore, our results imply that clustering in directed net-
works arises as a consequence of geometry and of the tendency to 
generate reciprocated interactions.

Discussion
Asymmetric interactions within complex systems are the norm rather 
than the exception20. Yet, for lack of sufficiently adequate modelling 
frameworks, it is common to see directionality neglected and treated 
somewhat as an afterthought21, the underlying assumption being that 
the undirected representation of many complex systems encodes most 
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Fig. 4 | Reproducing topological features of real directed networks with the 
directed-reciprocal 𝕊𝕊1 model (Dir-recip). a, Reciprocity and the number of 
triangles measured on the real networks (symbols) compared to those measured 
on synthetic networks (1000 network instances; small translucid regions around 
corresponding symbols). b, Complementary cumulative in-degree distribution 
(Comp. cumul. degree dist.) for the political blogs (polblogs) dataset.  
c, Complementary cumulative out-degree distribution for the polblogs dataset.  
d, In-degree and out-degree of individual nodes for the polblogs dataset, plotting 
the degrees measured in the real dataset versus the values calculated by the 
model. Only a fraction of the symbols are shown to avoid cluttering the plot.  
e, Number of triangles of each possible configuration as shown in Fig. 2a (that is, 
the triangle spectrum) for the polblogs dataset. The key in e applies to f–m as 
well. f, Same as e,but for the connectome of a tadpole larva of Ciona intestinalis 
using the cintestinalis dataset. g, Same as e, but for the food web of Little Rock 
Lake using the foodweb_little_rock dataset. h, Same as e, but for trade 

relationships between countries using the fao_trade dataset. i, Same as e, but for 
trust relationships among users in an online community of software developers 
using the advogato dataset. j, Same as e, but for emails among employees of a 
manufacturing company usign the email_company dataset. k, Same as e, but for 
friendships between high school students using the sp_high_school_diaries 
dataset. l, Same as e, but for links between Washington State’s government 
agencies' websites using the us_agencies_washington dataset. m, Same as e, but 
for friendships among students living in a residence hall using the residence_hall 
dataset. For each dataset, the parameters of the directed-reciprocal 𝕊𝕊1 model 
were adjusted using the inference procedure described in Supplementary 
Information Section IV. Green shaded areas in b and c, and vertical lines in d–m 
show the estimated 95% confidence interval (the 2.5 and 97.5 percentiles) 
obtained from 1,000 random network instances. The excellent congruence of 
measured versus modelled category counts for these nine real complex networks 
shows the quality and utility of the proposed method.
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of the relationship between the structure of these systems and their 
behaviour. However, mounting evidence argues that this is not the 
case, and that directionality drastically impacts the global organiza-
tion and the behaviour of these systems20,21,23–29,43. Hence, overlooking 
directionality provides an incomplete if not misleading picture.

Extending the framework of network geometry to directed net-
works has therefore been an urgent matter for many years, but progress 
was impeded by the fundamental incompatibility between asymmetric 
interactions and the symmetry of distances in any metric space. In 
this paper, we showed that this incompatibility can be bypassed by 
rethinking the relationship between connections and distances. This 
approach has resulted in a powerful and versatile framework amenable 
to analytical calculations that is easily adjusted to reproduce properties 
observed in a large variety of real network datasets.

We showed that our framework reproduces the intricate patterns 
of reciprocity and clustering observed in real directed complex net-
works. Albeit local, these features have a major impact on the global 
behaviour of these networks. For instance, they affect the outcome of 
spreading dynamics26, impact the stability of food webs24,25 and play 
a central role for flexible navigation and context-dependent action 
selection in connectomes44. Also, the information encoded in the pat-
terns of reciprocity and of clustering is rich enough for them to act as a 
signature of the nature of real complex networks (social, technological, 
physical, biological and so on)36,45,46. The method fulfils the paramount 
need that any realistic modelling approach be able to reproduce the 
intricate patterns of reciprocity and clustering of real complex net-
works under study. Now that the gap between asymmetric interactions 
and symmetric metric distances has been bridged, accurate modelling 
of a wide and diverse range of complex systems is within reach.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information, details of author contri-
butions and competing interests, and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-023-02246-6.
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Methods
Density of triangles in directed networks
We quantify the density of triangles in a directed network with the 
average local clustering coefficient, ̄cundir, computed using the undi-
rected version of the original directed network. From the adjacency 
matrix of the directed network A = {aij}, we define the undirected adja-
cency matrix ̃A whose elements are ̃aij = max(aij,aji) . The density of 
triangles is then

̄cundir =
1
N

N
∑
i=1

2Ti
ki(ki − 1) {ki > 1}, (11)

where Ti =
1
2
[ ̃A3]ii is the number of triangles to which node i partici

pates, ki = ∑N
j=1 [ ̃A]ij  is the degree of node i and {⋅}  is the indicator 

function.

Correspondence with the directed soft configuration model
The directed soft configuration model is the unique ensemble of unbi-
ased sparse random graphs whose entropy is maximized across all 
graphs with a given expected joint in- and out-degree distribution48,49. 
It consists of N nodes, each of which is assigned a pair of hidden degrees 
κ− and κ+ according to ρ(κ−, κ+). In this model, a directed link from node 
i to node j exists with probability

P(aij = 1 | κ+i , κ
−
j ) =

1
1 + N⟨κ⟩

κ+i κ
−
j

≃
κ+i κ

−
j

N ⟨κ⟩ , (12)

where the approximation holds in the sparse limit. In this limit the 
directed soft configuration model falls back to a directed version  
of the Chung–Lu model50. Note that the directed 𝕊𝕊1  model falls  
back to the directed soft configuration model in the limit β → 0 (ref. 5).

To see how the directed 𝕊𝕊1 model falls back on the directed soft 
configuration model, we first average equation (1a) over the angular 
distance Δθij to obtain the expected probability for a link to exist from 
node i to node j in the network ensemble

⟨aij | κ+i , κ
−
j ⟩= 2F1 (1,

1
β
, 1 + 1

β
, −( N

2μκ+i κ
−
j
)
β

) , (13)

where 2F1 is the hypergeometric function. From this expression, we 
show in Supplementary Information equation (23b) that in the limit 
N/(κ+i κ

−
j ) → ∞ the average connection probability becomes

⟨aij | κ+i , κ
−
j ⟩ ≃

κ+i κ
−
j

N ⟨κ⟩ , (14)

which we identify as the connection probability of the sparse directed 
soft configuration model, equation (12). The generalization of the 𝕊𝕊1 
model (main text) can therefore be seen as the geometric extension of 
the directed soft configuration model which, unlike its non-geometric 
counterpart, has a nonvanishing clustering in the limit N → ∞ (due to 
the triangle inequality of its embedding space).

Directed-reciprocal soft configuration model
Akin to the directed-reciprocal 𝕊𝕊1 model, we introduce the directed- 
reciprocal soft configuration model, a combination of the framework  
controlling reciprocity of Supplementary Information Section II.B  
and of the directed soft configuration model presented above (which 
provides the marginal probabilities).

Network datasets
The list of all datasets is provided in Supplementary Information Sec-
tion III. The datasets used in Fig. 4 were originally published as follows: 

polblogs in ref. 51, cintestinalis in ref. 52, foodweb_little_rock in ref. 53, 
fao_trade in ref. 54, advogato in ref. 55, email_company in ref. 56, sp_
high_school_diaries in ref. 57, us_agencies_washington in ref. 58 and 
residence_hall in ref. 59.

Data availability
The network datasets used in the article have been made publicly 
available by the original authors and were downloaded from the 
Netzschleuder network catalogue and repository (https://networks.
skewed.de).

Code availability
The scripts and the source code of the programs used to produce the 
figures are publicly available on Zenodo (https://doi.org/10.5281/
zenodo.8264693).
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