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Abstract: Directed networks are essential for representing complex systems, capturing
the asymmetry of interactions in fields such as neuroscience, transportation, and social
networks. Directionality reveals how influence, information, or resources flow within a
network, fundamentally shaping the behavior of dynamical processes and distinguishing
directed networks from their undirected counterparts. Robust null models are crucial
for identifying meaningful patterns in these representations, yet designing models that
preserve key features remains a significant challenge. One such critical feature is reciprocity,
which reflects the balance of bidirectional interactions in directed networks and provides
insights into the underlying structural and dynamical principles that shape their connec-
tivity. This paper introduces a statistical mechanics framework for directed networks,
modeling them as ensembles of interacting fermions. By controlling the reciprocity and
other network properties, our formalism offers a principled approach to analyzing directed
network structures and dynamics, introducing new perspectives and models and analytical
tools for empirical studies.

Keywords: complex networks; directed networks; maximum entropy; Fermi statistics;
reciprocity

1. Introduction
A directed network [1] is a representation of a complex system that captures the

asymmetry of interactions between its elements [2,3]. Directionality enriches network
structure [4,5], and is essential for understanding how influence, information, or resources
flow through a system [6], fundamentally distinguishing directed networks from undi-
rected ones. This is critical across a wide range of domains, including neuronal systems,
biological processes, transportation systems, and social networks. Moreover, directionality
fundamentally influences the behavior of dynamical processes on networks [7–10].

To gain a deeper understanding of the principles shaping real directed networks,
it is crucial to define models that accurately capture their essential characteristics and
organization. In general, network models enable researchers to distinguish meaningful
patterns from random fluctuations and provide principled explanations for the observed
regularities. The family of network models derived by maximizing the entropy of graph en-
sembles subject to the constraints imposed by observations in real-world networks offer the
least biased prediction for their properties [11,12]. However, designing maximum entropy
models for directed networks is a challenging task. This difficulty arises from the need to
account for the interplay between local node properties and global network structures.
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Specifically, key features in directed networks are in-degrees and out-degrees, account-
ing for the number of incoming and outgoing connected neighbors, their correlations, and
reciprocity [11,13], or the tendency of pairs of nodes to form bidirectional connections.
Reciprocity reflects the balance or imbalance of mutual interactions and serves as a critical
indicator of the underlying structural and dynamical rules governing the system. Another
key property is clustering, the tendency of pairs of neighbors to be connected, forming trian-
gles in the network topology. In directed networks, triangles become multifaceted, splitting
into seven distinct triangle motifs depending on the orientation of the arrows [14,15]. De-
spite the recent introduction of a directed network model [16] that simultaneously explains
many features in directed networks, such as reciprocity, clustering, and other structural
properties, a general theoretical approach based on the maximum entropy principle is
still lacking.

In this paper, we introduce a statistical mechanics framework for directed networks,
treating them as systems of interacting fermions. This approach leverages concepts from
quantum statistics to describe directed networks in terms of ensembles, where network
connections or fermions are constrained by conserved quantities and the entropy of the
ensemble is maximized to fix its probability. By framing directed networks in this way, we
provide a powerful theoretical tool for modeling their structure. Our framework not only
offers new insights into the organization of real-world directed networks but also provides
a principled basis for constructing models that respect key empirical properties.

2. General Formalism
The standard approach in network science treats the nodes of a network as the funda-

mental units of the system, with links representing the interactions between these units.
This perspective naturally aligns with real-world systems, where nodes correspond to
defined entities—countries in the world trade web, proteins or genes in biomolecular inter-
action networks, individuals in society, and so on—making focusing on nodes intuitive and
practical. However, this node-centric viewpoint poses challenges when defining models
using traditional tools from statistical mechanics, as it emphasizes the entities rather than
the interactions.

In this work, we adopt a different perspective by shifting the focus from the nodes of
the network to the links connecting them. In our approach, links are treated as fermionic
“particles” that can occupy distinct energy states. The phase space of possible energy states
is defined by the possible links between the N nodes of the network. This perspective
is particularly intriguing for two reasons. First, links in a network are unlabeled, which
makes them inherently indistinguishable. Second, in a simple network without multiple
connections, only one link can occupy a given state, as no two identical links can exist
between the same pair of nodes. These properties naturally lead to a statistical interpretation
of links in a network as an ensemble of identical and independent fermions, obeying
Fermi–Dirac statistics [11]. By reimagining directed networks in this manner, we not
only provide a novel statistical framework for describing their structure but also lay the
groundwork for constructing statistically rigorous principled models that capture the
fundamental constraints of directed and undirected networks alike. For instance, fermionic
mapping has been instrumental in the analytical study of different aspects of networks,
from the explanation of structural correlations in scale-free networks [17] to a topological
phase transition with divergent entropy involving the reorganization of network cycles [18].

2.1. Fermionic Approach to Directed Networks

Given a pair of nodes i and j, we define two distinct states, i → j and j → i, which
can be occupied by links, or fermions, pointing from i to j and from j to i, respectively,
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see Figure 1. Each state i → j has an associated energy εij. The occupancy of these states
is described by the asymmetric adjacency matrix {aij}, which equals 1 if the state i → j
is occupied and 0 otherwise, analogous to the occupation number of states in systems of
indistinguishable particles. All the topological properties of the network can be computed
from the adjacency matrix. For instance, the number of incoming connections to a node, or
the incoming degree, is

kin,i =
N

∑
j=1

aji,

where N is the total number of nodes in the network. Analogously, the number of outgoing
connections from a node, or the outgoing degree, is

kout,i =
N

∑
j=1

aij.

Reciprocity implies pairs of nodes with links pointing in both directions, as shown in
the sketch at the bottom of Figure 1. In random network models, a certain default level of
reciprocity is attained when links are independent, or fermions are non-interacting. How-
ever, higher or lower values require that links are correlated, or fermions are interacting.
To account for this possibility, we assume that the energy of two links occupying the two
states i→ j and j→ i simultaneously, that is, of mutual interactions, is ε̃ij. In general, ε̃ij is
different from εij + ε ji.

i jij

ji

ij

i j

ji

i jij

Figure 1. Possible fermionic states between a pair of nodes i and j, and their associated energies. The
solid arrow indicates the presence of a directed link and the dashed arrow an empty state. When
the two fermions simultaneously occupy the two states, i→ j and j→ i, the total energy includes a
correction ∆εij added to the sum of the energies of the partially occupied states.

Due to the indistinguishability of links in a network, any directed network can be
represented in the Fock space using the basis {|a⟩ ≡ ⊗

i,j |aij⟩} defining the number of
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particles/links occupying the set of possible single-particle states. Thus, the representation
of the Hamiltonian of the network Ĥ in the basis of the Fock space defined by the adjacency
matrix is

⟨a| Ĥ |a⟩ = ∑
i<j

[
aijεij + ajiε ji + aijaji∆εij

]
, (1)

where
∆εij = ε̃ij − εij − ε ji

is the correction due to the interaction of two fermions occupying the two states i → j
and j→ i. When ∆εij > 0, the presence of two links connecting the same pair of nodes in
opposite directions is energetically unfavorable, and thus the reciprocity is lower than in the
random case. Conversely, when ∆εij < 0, the link reciprocity is higher than random case.

In analogy to the case of indistinguishable quantum particles, it is more convenient to
work in the grand canonical ensemble, where the constraints are the following:

• the number of fermions (links) is fixed on average;
• The average energy is fixed as well.

In our formalism, this implies that the total number of links is a random variable that is
fixed on average by the chemical potential µ. The grand partition function of the system is
given by

Z = Tr
(

e−β(Ĥ−µN̂L)
)

(2)

= ∏
i<j

(
1 + e−β(εij−µ) + e−β(ε ji−µ) + e−β(ε̃ij−2µ)

)
,

where N̂L is the number of links operator and the inverse temperature β controls the
average energy of the network. The chemical potential µ fixes the average in-degree (and
out-degree) through the relation

⟨kin⟩ = ⟨kout⟩ =
1

Nβ

(
∂ ln Z

∂µ

)
β

, (3)

and the entropy of the ensemble can be computed from the partition function as

S = ln Z− β

(
∂ ln Z

∂β

)
µ

. (4)

Beyond these global thermodynamic properties, the probability of the ensemble gen-
erating a graph with adjacency matrix {aij} is computed as the probability of a particular
configuration of the system

Prob({aij}) =
1
Z ∏

i<j
e−β[(εij−µ)aij+(ε ji−µ)aji+aijaji∆εij]. (5)

The joint probability of the pair of states i→ j and i← j between nodes i and j is

Prob(aij, aji) =
e−β[(εij−µ)aij+(ε ji−µ)aji+aijaji∆εij]

1 + e−β(εij−µ) + e−β(ε ji−µ) + e−β(ε̃ij−2µ)
. (6)

Finally, the probability of a directed link existing between nodes i and j, pij ≡ Prob(aij = 1), is

pij =
e−β(εij−µ) + e−β(ε̃ij−2µ)

1 + e−β(εij−µ) + e−β(ε ji−µ) + e−β(ε̃ij−2µ)
. (7)
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Equation (7) can be used to evaluate the average in- and out-degrees of individual nodes as

κout,i = ∑
j

pij

and
κin,i = ∑

j
pji,

and the chemical potential as the solution of the equation

⟨kin⟩N = ∑
i,j,j ̸=,i

pij. (8)

Finally, we can use these results to evaluate the reciprocity of the network r, defined
as the ratio between the number of reciprocated links and the total number of links. Thus,

r =
2 ∑i<j pij(1, 1)

∑i,j ̸=i pij
, (9)

where we have defined pij(1, 1) ≡ Prob(aij = 1, aji = 1). It is important to mention here
that the freedom to chose the interaction energies ∆ϵij enables the possibility to adjust the
level of reciprocity for particular sets of nodes or with specific topological properties.

2.2. Non-Interacting Fermions

When the links are independent or, equivalently, the fermions are non-interacting,
∆εij = 0 and the energy is ε̃ij = εij + ε ji. In this situation, the connection probability pij of a
directed link between nodes i and j takes the simple form

pni
ij =

1

1 + eβ(εij−µ)
. (10)

The joint probability Prob(aij, aji) factorizes as Prob(aij, aji) = pni
ij pni

ji , and so does the
partition function

Z = ∏
i<j

(
1 + e−β(εij−µ)

)(
1 + e−β(ε ji−µ)

)
. (11)

Finally, the reciprocity becomes

r =
2 ∑i<j pni

ij pni
ji

∑i,j ̸=i pni
ij

, (12)

which corresponds to the reciprocity expected by pure chance.

2.3. Interacting Fermions

The connection probability of the system without interactions, pni
ij in Equation (10), can

be used to rewrite the connection probability for a directed link in the case of interacting
fermions, pij in Equation (7), which leads to

pij = pni
ij

1− pni
ji (1− e−β∆εij)

1− pni
ij pni

ji (1− e−β∆εij)
. (13)

In the case of weak interactions or high temperature, the term β∆ε is small, leading to
pij ≈ pni

ij . Similarly, as seen from Equation (13), the connection probability remains un-

changed by fermionic interactions in the limits pni
ij → 0 or pni

ij → 1, where pij = pni
ij again
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holds. In these extreme situations, the lack or excess of bidirectional links leaves no room
for the network to exhibit sensitivity to changes in the tendency for reciprocity. We will use
this general property in the next section when dealing with specific models.

3. Specific Random Network Models
So far, we have not specified the energies of the states {εij}, which ultimately define

the particular model at hand. To illustrate the power of our approach, we focus on two
different models within our formalism: the non-interacting Directed Soft Configuration
Model (NI-DCM) [11], and the non-interacting Directed Geometric Soft Configuration
Model (NI-DGCM) [16]. Furthermore, we also derive their maximum entropy interacting
counterparts (I-DCM and I-DGCM).

A priori, our formalism works for an arbitrary number of fermions between 0 and
N(N − 1). However, real complex networks are sparse, meaning that the average in- and
out-degrees, ⟨kin⟩ = ⟨kout⟩, are size-independent. In the rest of this paper, we consider
ensembles of sparse networks.

3.1. Directed Configuration Model

To derive the probability of connection of the DCM [11,19] within our formalism, we
make the simplest assumption that the energy of a directed link connecting nodes i and j
comes from two sources: the energetic cost that node i incurs when creating an outgoing
connection, εout,i, plus the energetic cost that node j incurs when accepting an incoming
connection, εin,j. The total energy of the fermionic state is then

εij = εout,i + εin,j. (14)

Thus, each node in the network is characterized by an associated vector (εin, εout) account-
ing for incoming and outgoing connections. The distribution of such variables is given
by the probability density function ρ(εin, εout), with marginal distributions for εin and εout,
ρin(εin) and ρout(εout).

Although models in the DCM family are not fully realistic, they serve as prominent
null models or baselines to evaluate whether observed features in real directed networks
arise due to specific processes or simply by chance.

3.1.1. Non-Interacting Directed Configuration Model (NI-DCM)

Using Equation (8), and assuming that ∆εij = 0, and replacing sums with integrals,
we can write

⟨kin⟩ = Nz
∫ ∫

ρin(εin)ρout(εout)

z + eβεin eβεout
dεindεout, (15)

where we have defined the fugacity in the standard way as z ≡ eβµ. Imposing sparsity
in the thermodynamic limit of this particular model implies that the fugacity must scale
with the system size as z ∼ N−1. This implies that the chemical potential takes the
size-dependent form

µ =
1
β

ln
[

⟨kin⟩
N⟨e−βεin⟩⟨e−βεout⟩

]
, (16)

provided that ⟨e−βεin⟩ and ⟨e−βεout⟩ are bounded. In this case, the dependence between
expected in- and out-degrees of nodes, κin and κout, and the in and out-energies, εin and
εout, become

κin =
⟨kin⟩
⟨e−βεin⟩

e−βεin and κout =
⟨kout⟩
⟨e−βεout⟩

e−βεout . (17)
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Substituting Equation (14) into Equation (10) and using Equations (16) and (17), the connec-
tion probability in Equation (10) becomes the one for the directed soft configuration model:

pni
ij =

1

1 + ⟨kin⟩N
κout,iκin,j

. (18)

Notice that, when the energies of states in Equation (14) are temperature-independent, the
limit β → 0 converges to the directed version of the classical Erdös-Rényi ensemble [20]
because, in this limit, the expected degree of all nodes converges to the same value, as can
be seen from Equation (17). In the opposite limit, when β ≫ 1, the degree distribution
becomes heavy-tailed and, depending on the distribution of energies, it may undergo
a phase transition to a condensed phase where a finite fraction of nodes accumulate an
extensive number of links, as shown in [21]. This effect will occur when the averages
⟨e−βεin⟩ and/or ⟨e−βεout⟩ diverge for β > βc for a critical inverse temperture βc.

An alternative approach to Equation (14) is to fix the expected in- and out-degree
distributions by defining temperature-dependent energy levels as

εij = −
1
β

ln
(
κout,iκin,j

)
, (19)

and the chemical potential as

µ = − 1
β

ln [⟨kin⟩N]. (20)

These choices lead to the same connection probability Equation (18), with the difference that
now the expected in- and out-degrees are temperature-independent and, thus, the degree
distribution is fixed. Temperature-dependent energy levels appear in strongly interacting
systems [22–25].

The entropy of the ensemble can be calculated using Equation (4), whose leading
terms are

S = ⟨kin⟩N(ln [⟨kin⟩N]− 1) + O(ln N), (21)

recovering results in [12]. Notice that this expression does not depend on the ensemble
temperature, only on the total number of links, which is a property that is fixed in the
ensemble and does not depend on the degree distribution. This means that the same
expression holds in the alternative definition of the model where the energy of the states is
temperature-dependent.

Finally, the reciprocity of the ensemble can be evaluated using Equation (12), and reads

r =
⟨kinkout⟩2
N⟨kin⟩3

−
⟨k2

ink2
out⟩

N2⟨kin⟩3
≈ ⟨kinkout⟩2

N⟨kin⟩3
. (22)

Thus, the reciprocity of the NI-SCM vanishes in the thermodynamic limit, even though it
can become significant if the in- and out-degrees of nodes are positively correlated and
their distributions heavy-tailed.

3.1.2. Interacting Directed Configuration Model (I-DCM)

The probability for a directed link in this model can be found by substituting
Equation (14) into Equation (7), with ∆εij ̸= 0, and imposing sparsity, which would
again lead to Equations (16) and (17) if ⟨e−βεin⟩ and ⟨e−βεout⟩ are bounded. Alterna-
tively, Equation (13), which relates the connection probabilities in the interacting and
non-interacting formulations, provides a shortcut. The connection probability of the NI-
DCM is size-dependent with pni

ij scaling as N−1, hence approaching zero in the thermody-
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namic limit. At this extreme, Equation (13) indicates that pij ≈ pni
ij , which implies that the

energies εin and εout, along with β and µ, define the in- and out-degree distributions as in
the non-interacting model.

In contrast, the joint probability Prob(aij, aji) in the I-DCM does not factorize, thereby
enabling the tuning of the reciprocity. The reciprocity can be calculated from Equation (9),
using the probability of having a bidirectional connection between nodes i and j from
Equation (6) after imposing the condition that, the two links are present simultaneously,
aij = aji = 1. Using that

eβ(εij−µ) =
N⟨kin⟩

κout,iκin,j
,

the reciprocity is

r =
2

N⟨kin⟩
× (23)

×∑
i<j

κout,iκin,j
N⟨kin⟩

κout,jκin,i
N⟨kin⟩

e−β∆εij

1 +
κout,iκin,j
N⟨kin⟩

+
κout,jκin,i
N⟨kin⟩

+
κout,iκin,jκout,jκin,i

N⟨kin⟩)2 e−β∆εij
,

which, up to leading order in N, gives

r =
1

(N⟨kin⟩)3 ∑
i,j

κout,iκin,iκout,jκin,je
−β∆εij . (24)

This result implies that reciprocity vanishes in the thermodynamic limit. The specific form
in which r → 0 as N → ∞ depends on the form of the interaction energy. In all cases, when
∆εij > 0, reciprocity is energetically unfavorable, and thus lower than in the NI-SCM for
the same temperature; conversely, when ∆εij < 0, the link reciprocity is higher.

For instance, a constant value independent of the specific pair of nodes, ∆εij = ε,
leads to

r =
e−βε

N⟨kin⟩3
⟨kinkout⟩2, (25)

meaning that the interaction introduces temperature-dependent rescaling as compared to
the reciprocity of the NI-SCM in Equation (22).

If, instead of a constant value, the nodes in the interaction have an additive contribu-
tion to the interaction correction energy, ∆εij = εi + ε j, then

r =
1

N⟨kin⟩3

(
∑

i
κout,iκin,ie−βεi

)2

. (26)

If εi is proportional to the temperature, εi ∝ 1/β, the NI-SCM behavior is recovered with a
temperature-independent constant rescaling. Additionally, it can incorporate dependencies
on the hidden degrees of the corresponding node, for instance, εi = −1/β ln(κout,iκin,i),
and then

r =
1

N⟨kin⟩3
⟨(kinkout)

2⟩2. (27)

Again, local correlations between the incoming and outgoing degrees of a node control
the velocity of the reciprocity’s decay. The results above also imply that a size-dependent
negative interaction energy with intensity |ε| ∝ 1/β ln N could counteract the decay of
reciprocity in the SCM model and produce a finite value even in the thermodynamic limit.
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3.2. Directed Sd Model

As we have seen in the previous section, reciprocity vanishes in the thermodynamic
limit of the DCM even when fermions interact. Similarly, clustering also vanishes due to
the size dependence of the connection probability. Finite reciprocity and clustering can
be achieved in the framework of geometric networks [26,27], where nodes are distributed
in an underlying metric space such that a distance xij can be defined between any pair of
nodes. In this situation, we assume that the energies of sending out or accepting a link are
supplemented with a cost associated with the distance between the nodes. Thus, the total
energy of a link is

εij = εout,i + εin,j + f (xij), (28)

where f (x) is a monotonically increasing function of the distance. An interesting choice is
a logarithmic function, f (xij) = ln xij, with nodes distributed in a d-dimensional Euclidean
space, Rd, according to a Poisson point process with a constant density, δ.

A prominent real system following this rationale is the Internet at the autonomous
systems (AS) level, where link directions represent customer-to-provider relationships
between autonomous systems [28]. A link from AS i to AS j indicates the flow of money
when Internet traffic is routed through that connection. Notice that, in general, ASs can act
as customers in some connections and as providers in others. In this system, the term εout,i

represents the cost that AS i must pay to maintain a connection as a customer. Similarly,
εin,j represents the cost that AS j must pay to maintain a connection as a provider. These
two costs generally depend on the size and physical infrastructure of each AS. Finally, the
term f (xij) represents the cost associated with the physical constraints of the connection,
such as, for instance, its physical length. In the case of very large ASs, a negative interaction
energy, ∆εij, represents the synergistic effect of having a bidirectional connection, typically
between the tier 1 ASs that define the core of the Internet.

In a different domain, brain connectomes are well described by the hyperbolic ge-
ometry network framework encoded by the directed Sd model [16,29] and display an
over-representation of reciprocal connections [30]. To form a synaptic connection, the
costs of maintaining neurotransmitters and neuroreceptors are incurred, along with a cost
associated with maintaining the neural fibers and the signal as it travels along the distance
covered by them.

3.2.1. Non-Interacting Directed Sd Model (NI-DSM)

When ∆εij = 0, the expected out-degree of a node with energy εout , located, without a
loss of generality, at the origin of coordinates, is given by

⟨kout(εout)⟩ = δ
∫

ρ(εin)dεin

∫ ∞

0

Vd−1rd−1

1 + rβeβ(εin+εout−µ)
dr, (29)

where Vd−1 = 2πd/2/Γ(d/2) is the volume of a (d− 1)-sphere. This expression can be
rewritten for β > d as

⟨kout(εout)⟩ = δVd−1 I(β, d)⟨e−dεin⟩edµe−dεout , (30)

where

I(β, d) =
∫ ∞

0

td−1dt
1 + tβ

=
π

β sin dπ
β

. (31)
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Thus, if we redefine the expected out- and in-degrees as κout ≡ e−dεout and κin ≡ e−dεin ,
with µ = − 1

d ln (δVd−1 I(β, d)⟨kin⟩), the connection probability becomes

pij =
1

1 + χ
β
ij

with χij ≡
xij

(µ̂κout,iκin,j)
1
d

, (32)

and

µ̂ =
βΓ
(

d
2

)
sin
(

πd
β

)
2δπ1+ d

2 ⟨kin⟩
. (33)

(The case β < d can be analyzed as in [18]). This model can be immediately identified as the
directed variant of the Sd model, first introduced in [16]. It represents a directed extension
of the Sd model originally proposed in [31], along with its equivalent formulation in the
hyperbolic plane, known as the H2 model [32]. Notably, numerous analytical results have
been derived for the S1/H2 model, including studies on degree distribution [31–33], clus-
tering [32–35], graph diameter [36–38], percolation [39,40], self-similarity [31], and spectral
properties [41]. Moreover, this model has been extended to incorporate growing networks,
weighted networks, multilayer networks, and networks with community structure, and it
also serves as the foundation for defining a renormalization group for complex networks,
see [26,27] and references therein. These analytical results and extensions of the undirected
geometric model provide a guide for future studies of the Directed Sd Model.

Unlike the DCM, geometry implies that the connection probability is size-independent.
In turn, this implies that the reciprocity and clustering are finite, as shown in [16]. Interest-
ingly, this model undergoes a topological phase transition at the critical inverse temperature
βc = d [18]. For β > βc, clustering is finite in the thermodynamic limit, whereas it vanishes
below this value. This phase transition is of a topological nature and involves the reorgani-
zation of cycles in the network; transitioning from being short-range in the clustered phase
to long-range in the unclustered one. This transition is accompanied by an anomalous
behavior of the entropy per link. From Equation (4), we can compute the entropy as

S
N⟨kin⟩

=
2β

d

(
1− πd

β
cot

πd
β

)
. (34)

Unlike standard continuous phase transitions, the entropy per link diverges at the critical
temperature from below as

S
N⟨kin⟩

∼ 1
β− d

, (35)

whereas it diverges logarithmically at higher temperatures. The origin of this anomalous
behavior is due to the fact that the number of available microstates per link at low tempera-
tures is finite, primarily connecting pairs of nodes at bounded distances. However, once
the temperature surpasses the critical temperature, the number of available microstates
becomes that of the order of the number of nodes, as links can now connect pairs of nodes
that are arbitrarily far apart.

3.2.2. Interacting Directed Sd Model (I-DSM)

When reciprocal links interact in the directed Sd model, the strategy applied for the
I-DCM, based on using Equation (13) to relate the connection probabilities in the interacting
and non-interacting formulations, cannot be used because pni

ij is independent of the system
size and does not approach zero in the thermodynamic limit. The probability of a directed
link in the I-DSM must be found by substituting Equation (28) into Equation (7), with
∆εij ̸= 0, and imposing sparsity, which leads to new definitions of the chemical potential µ
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and the relation between the expected in- and out-degrees of a given node and its in- and
out-energies εin and εout. In particular, the connection probability can be written as

pij =
χ

β
ji + e−β∆εij

χ
β
ij + χ

β
ji + χ

β
ijχ

β
ji + e−β∆εij

, (36)

where
χij = xije

εout,i+εin,j−µ. (37)

Using this expression, the average out-degree of a node with the in- and out-energies
εin,i and εout,i can be written as

⟨kout(εin,i, εout,i)⟩ = δVd−1edµe−dεout,i× (38)

×
∫ ∫

e−dεin,j ρ(εin,j, εout,j)dεin,jdεout,j

∫ ∞

0

td−1(qijtβ + e−β∆εij)

tβ + qij(1 + tβ)tβ + e−β∆εij
dt,

where qij ≡ eεout,j−εout,i+εin,i−εin,j . By integrating Equation (38) over the energies εin,i and
εout,i and equating it to ⟨kin⟩, we can obtain the value of the chemical potential µ from

edµ =
⟨kin⟩

δVd−1⟨e−d(εout,i+εin,j)
∫ ∞

0
td−1(qijtβ+e−β∆εij )

tβ+qij(1+tβ)tβ+e−β∆εij
dt⟩

, (39)

where the average in the denominator is taken over the random variables εin,i, εin,j, εout,i, εout,j,
and ∆εij. Using a similar approach, the reciprocity becomes

r =
⟨e−d(εout,i+εin,j)

∫ ∞
0

td−1e−β∆εij

tβ+qij(1+tβ)tβ+e−β∆εij
dt⟩

⟨e−d(εout,i+εin,j)
∫ ∞

0
td−1(qijtβ+e−β∆εij )

tβ+qij(1+tβ)tβ+e−β∆εij
dt⟩

. (40)

Equation (38) implies that the average in- or out-degree of a given node depends
on both εin and εout, not only on one of them, as is the case for non-interacting fermions.
This indicates that computing the degree distributions requires the explicitly solving
Equation (38). However, in the particular case of fully correlated εin and εout and ∆εij = ∆ε,
the term qij = 1, and the average in- or out-degree becomes a function of εin or εout

separately. Thus, as in the case of non-interacting fermions, we can write κout ≡ e−dεout and
κin ≡ e−dεin , with

µ = −1
d

ln
(
δVd−1 Ĩ(β, d, ∆ε)⟨kin⟩

)
, (41)

where

Ĩ(β, d, ∆ε) =
∫ ∞

0

td−1(tβ + e−β∆ε)

2tβ + t2β + e−β∆ε
dt, (42)

and the reciprocity becomes

r =

∫ ∞
0

td−1e−β∆ε

2tβ+t2β+e−β∆ε dt

Ĩ(β, d, ∆ε)
. (43)

Figure 2 shows the results of the reciprocity in this case as a function of ∆ε for different
values of β. The reciprocity converges to one in the limit ∆ε→ −∞ and approaches zero
in the limit ∆ε→ ∞, as expected. Furthermore, it increases as the temperature rises. Note
that the convergence to 1 with very low temperatures and/or a highly negative ∆ε is only
possible in the fully correlated case. In all other cases, the maximum possible value of the
reciprocity is always less than one.
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Figure 2. Reciprocity of the interacting directed Sd model for fully correlated in- and out-energies, as
a function of ∆ε. Different curves correspond to different temperatures β−1.

4. Conclusions
The statistical mechanics framework for directed networks introduced in this work

treats links as fermionic particles subject to constraints and interactions. This formalism
allowed us to describe directed networks within a principled approach that incorporates the
reciprocity and other structural properties, addressing the limitations of existing models. By
leveraging concepts from quantum statistics, our methodology redefines network modeling,
shifting the focus from node-centric descriptions to link interactions. Formulating directed
networks within a grand canonical ensemble, we demonstrated how the chemical potential
and key network features, such as the degree distribution and reciprocity, naturally emerge
from the underlying statistical framework.

The versatility and analytical power of our formalism were illustrated through appli-
cations to specific cases, including the Directed Configuration Model and the Directed Sd

model. The key results highlighted the influence of interactions on the reciprocity and clus-
tering. In the non-interacting formulations, the reciprocity vanishes in the thermodynamic
limit, whereas in the interacting models, the framework supports a tunable reciprocity
that remains finite under specific conditions. The inclusion of a geometric component in
the Sd model further showcased how spatial constraints shape the emergent properties of
the network. This framework bridges theoretical advances with empirical applicability,
providing a robust toolset for analyzing real-world directed networks. Additionally, it
paves the way for exploring dynamical processes on directed topologies and designing
models that better reflect the intricate balance of directed interactions. Future work could
extend these principles to multilayer, temporal, or weighted networks, offering a deeper
understanding of complex systems.
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