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Metabolism is a fascinating cell machinery underlying life and disease and genome-scale

reconstructions provide us with a captivating view of its complexity. However, deciphering the

relationship between metabolic structure and function remains a major challenge. In particular,

turning observed structural regularities into organizing principles underlying systemic functions is

a crucial task that can be significantly addressed after endowing complex network representations

of metabolism with the notion of geometric distance. Here, we design a cartographic map of

metabolic networks by embedding them into a simple geometry that provides a natural

explanation for their observed network topology and that codifies node proximity as a measure

of hidden structural similarities. We assume a simple and general connectivity law that gives more

probability of interaction to metabolite/reaction pairs which are closer in the hidden space.

Remarkably, we find an astonishing congruency between the architecture of E. coli and human cell

metabolisms and the underlying geometry. In addition, the formalism unveils a backbone-like

structure of connected biochemical pathways on the basis of a quantitative cross-talk. Pathways thus

acquire a new perspective which challenges their classical view as self-contained functional units.

Introduction

Cells are self-organized entities that carryout specialized tasks

at different interrelated omic-levels1 involving different actors,

from codifying genes to energy-carriers or constitutive meta-

bolites. A key towards understanding this complex architecture at

a systems level is provided by reliable genome-wide reconstruc-

tions of the set of biochemical reactions that underlie the func-

tional cell machinery.2 Such reconstructions can be analyzed

using tools and techniques from complex networks theory,3–5 a

discipline that is being used in the characterization of biological,

chemical, infrastructural, technological or social-based systems of

complex relationships.6,7 More precisely, nodes in metabolic

networks account for either metabolites or reactions, while

links represent the interactions among them. Apart from

providing a large-scale organizational picture, these network-

based representations have permitted to analyze sensible

issues in cellular metabolism, like flux balances,8,9 regulation,10

robustness,11 or reaction reliability.12

The advantage of using network-based representations, in

whatever context we employ them, may be arguably questioned

by the fact that complex networks are customarily modeled as

pure topological constructions lacking a true geometric measure

of separation among nodes. This is aggravated by the fact that

complex networks have the small-world property,13 meaning that

every pair of nodes in the system are very close in topological

distance. This is an important and obvious degeneracy if we

think in terms of optimizing routing or transportation strategies

in man-engineered networks, but can be equally crucial when

referring to the description of the metabolic functioning at a

single cell level. As a matter of fact, the related attempt of

separating nodes into communities, that has been already

pursued in different contexts14 and, in particular, applied to

metabolic networks,15 has proven to be an extremely difficult

task. Classical community detection approaches turn out to be

a posteriori classification methods, and do not provide insights

into any potential connectivity law underlying the observed

topology. These questions could be significantly addressed by

quantifying the abstract concept of node proximity in terms of

a metric distance which could be combined into a simple and

general probabilistic connectivity law. Such a biochemical

connectivity law, relying on metric distances, may provide a

simple explanation of the large-scale topological structure

observed in metabolism,16 and it can also be used, like in this

work, to revisit the concept of biochemical pathways.

In this paper, we uncover the hidden geometry of the E. coli

and human metabolisms and find that their network topologies

obey an extremely simple and powerful—metric-based—

probabilistic connectivity law. In particular, given a pair

metabolite/reaction separated by a geometric distance dmr in

the underlying metric space, the probability of existence of a

connection between them is here shown to be a decreasing
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function of the effective distance deff� dmr/(krkm), where degrees

km and kr count the number of their respective neighboring

nodes. The geometric distance dmr—a measure of structural

affinity between metabolites and reactions—is in this way

modulated by the product of degrees of the two involved nodes,

so that the degree heterogeneity observed in the metabolic network

is properly taken into account.17 Naturally, a key ingredient in

our approach concerns the suitable geometry substantiating

this distance. We find that a simple one dimensional closed

Euclidean space, i.e. a circle, when combined with the network

degree heterogeneity is enough to capture the global organization of

the network. Using statistical inference techniques, we find angle-

based coordinates in this space for the full set of metabolites and

reactions, which expose the extraordinary congruency of ourmodel.

As a direct application of our model, we compare the results

of our embedding with the standard classification of reactions

in terms of biochemical pathways. Such a reaction-aggregated

analysis reveals rather disparate trends when pathways are

characterized in terms of the circle-based localizations of their

constituent reactions. Some specific pathways appear concen-

trated over narrow sectors of polar angles, while more trans-

versal ones are widespread over the circle. This points to a

diversity of pathway topologies, with some of them displaying

groups of densely interconnected reactions while some others

evidencing a much more weakly connected internal structure.

Moreover, pathways themselves admit to be linked using the

discovered connectivity law. This strategy reveals different levels

of cross-talk between pathways, leading to a coarse-grained

view of metabolic networks or, in other words, to the build-up

of networks of pathways. Such a higher level in the hierarchical

organization of metabolic networks advises against the study of

pathways as autonomous subsystems and should permit us to

calibrate more accurately how a pathway-localized perturbation

spreads over the entire network.

Results

Embedding algorithm and validation

A simple abstraction of a given metabolism is given by its

bipartite network representation. This amounts to consider

metabolites and reactions as belonging to different subsets of

nodes, with metabolites (irrespectively considered as reactants

and products) linked to all reactions they take part in, thus

avoiding connections between nodes of the same kind, see

Fig. 1a. The first step towards mapping this network consists

in defining a geometric model that can advantageously represent

it. The simplest metric space that can globally embed a network

is a circle of radius R. This is the simplest choice such that there

are no a priori preferred locations and, therefore, any inhomo-

geneity in the final angular distribution is dictated by the

network structure itself. Nodes, in our case metabolites and

reactions separately, are distributed on it according to specific

angular coordinates to be determined. The whole strategy to find

these coordinates rests on a precise definition of the interactions

between nodes in terms of their angular separation in the circle.

We prescribe a connection probability between a reaction r and

a metabolite m, with respective bipartite degrees kr and km and

separated by a distance dmr on the circle (dmr = RDymr, Dymr

being the angular separation between the metabolite and

reaction) to be a decreasing function of such distance rescaled

by the product of node degrees,18

Probfm is connected to rg � p
dmr

kmkr

� �
: ð1Þ

It is worth stressing that this is the central and unique law

underlying the whole formalism. Note that this choice is

particularly suggestive since by identifying the node degree

Fig. 1 Model and empirical validation. (a) Bipartite network repre-

sentation of four coupled stoichiometric equations in the pentose-

phosphate pathway of E. coli. Reaction acronyms stand for the

catalyzing enzyme: zwf, glucose-6-phosphate dehydrogenase [EC 1.1.1. 49];

pgl, 6- phospho-gluconolactonase [EC 3. 1. 1.31]; gnd, 6- phosphogluconate

dehydrogenase [EC 1.1.1. 43]; rpe, ribulose-phosphate 3-epimerase [EC 5.

1.3. 1]. Note that connections (black lines) are always between reactions

(yellow circles) and metabolites (blue squares), metabolites or reactions are

never connected among themselves. (b) A sketch of the S1 � S1 model.

Nodes are randomly distributed in the circle and given expected degrees,

symbolically represented by the sizes of the nodes. The distance between two

nodes is computed as the length of the arc separating the nodes. Due to the

peculiar rescaling of distances by degrees in eqn (1), a node can connect not

only to nearby nodes but also to far apart nodes with large degrees. (c) The

plot shows a comparison between the empirical connection probability for

the E. coli and human metabolisms and the theoretical one given in eqn (2).

The empirical connection probability is computed as the fraction between

the number of actual connections at effective distance dmr/mkmkr and the

total number of pairs at the same effective distance. (d) The Receiver

Operating Characteristic (ROC) curve computed for our model for the

E. coli and human metabolisms is shown. To calculate the ROC curves, we

rank (from highest to lowest) the connection probabilities given by the

model for all possible pairs metabolite/reaction (either present or absent)

using the previously inferred coordinates. We then define a threshold

probability that allows us to discriminate between positive interactions

(those above the threshold) from negative ones (those below the threshold)

and to compute the fraction of true positive connections (True Positive Rate,

TPR) and that of false positive connections (False Positive Rate, FPR), with

the understanding that a true positive connection is an observed link above

the threshold, while a false positive is a non-existing one above the threshold

(note that the terminology positive and negative connections has nothing to

do here with a potential positive or negative biological effect). Each thresh-

old value corresponds to one point of the ROC curve. The threshold is

scanned throughout the whole range of probabilities to produce the

complete ROC curve.
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as a measure of its mass, this interaction mimics the Newtonian

form of gravitational interaction. More precisely, the explicit

form for the above interaction reads

p
dmr

kmkr

� �
¼ 1

1þ ðdmr=mkmkrÞb
: ð2Þ

This particular prescription combines, in a simple way, the

classical network topological concept of node degrees with the

newly introduced notion of geometric distance. All in all, this

functional form expresses an intuitive view, i.e. closer nodes in

the metric space are more likely to be linked, while nodes with

higher degrees sustain farther reaching connections regardless

of their distances. Fig. 1b shows a visual sketch summarizing

the basic trends of the bipartite formalism just outlined. We

refer to it with the notation S1 � S1, see Methods. Besides, this

model gives rise to an ensemble of graphs that are maximally

random given their specific constraints.19,20 Finally, parameters

m and b are consistently determined to reproduce the statistical

properties of the original network. Parameter m fixes the total

number of edges, whereas b controls clustering, i.e., a measure

of short-range loops, see ESI.w
To infer the angle-based coordinates for metabolites and

reactions in the ring we use a two-step procedure. Starting

from the original bipartite network, we first perform a one-

mode projection over the set of metabolites by connecting two

metabolites whenever they participate in the same reaction.

We then circle-embed such a unipartite metabolites network

applying the unipartite version of the formalism as described

earlier.21 Finally, using this partial allocation as an initial fixed

template, we complete the embedding of the reactions by

invoking a maximum likelihood inference strategy (the detailed

description of the embedding algorithm and the coordinates of

metabolites and reactions are fully reported in ESIw).
We apply our formalism to the iAF1260 version of the K12

MG1655 strain of E. coli metabolism22 and to human cell

metabolism,23 both provided in the BiGG database,24,25 see

ESI.w Before presenting the embedding for these metabolic

networks, we comment on the validation of the proposed

mapping procedure. We first perform a direct calibration

which amounts to compare the set of observed metabolite–

reaction connection probabilities in the original reconstructions

with the theoretical connection probability given by eqn (2).

Explicit results are presented in Fig. 1c, both for E. coli and

human metabolisms. Besides the striking agreement between

observed and predicted connections, it is worth noting that the

two analyzed networks are perfectly represented with the same b
exponent fitted to a value b = 1.3. We also check the discrimi-

nation power of our algorithm by computing the Receiver

Operating Characteristics (ROC) curve of our model,26 which

compares the true positive rate (TPR) vs. the false positive rate

(FPR) and informs us about how good is our method at

correctly discerning real links. Results are shown in Fig. 1d.

When representing the TPR in front of the FPR, a totally

random guess would result in a straight line along the diagonal.

In contrast, the ROC curve of our model lies far above the

diagonal, which indicates a remarkable discrimination power. A

convenient summary statistic can be defined as the area under

the ROC curve (AUC statistic), which represents the probability

that a randomly chosen observed link in the network has a

higher probability of existence according to the model than a

randomly chosen non-existing one. This statistic ranges in the

interval [0.5,1], being AUC = 0.5 a random prediction and

AUC = 1 a perfect prediction. In our case, values are AUC =

0.96 for E. coli and AUC = 0.97 for human metabolism. Both

validation tests confirm that our model adjusts nearly perfectly

to the real data.

Fig. 2 shows the embedding representation of the E. coli

metabolism (the mapping of the human metabolism is provided

in the ESIw). For the sake of clarity, metabolites are displaced

towards the center of the circle by an amount proportional to

their degree so that hub metabolites are close to the center of the

disk whereas low degree ones are placed in the periphery. The

distribution over the circle is far from being uniform as it could

be naively expected. Indeed, this is a distinctive signature of the

delicate structural organization of metabolic networks. In

particular, different levels of aggregation are readily visible, in

as much as human settlements that are unevenly distributed in

population maps. Simultaneously with densely occupied areas,

empty regions are visible and appear irregularly punctuated

with occasional metabolite–reaction associations. As a whole,

this landscape is an indication of some hierarchical trends

existing in the analyzed networks and prompts us to look for

eventual higher organizational levels. In this regard, we revise

the biochemical concept of pathways, classically understood as

chains of step-by-step reactions which transform a principal

chemical into another either for immediate use, to propagate

metabolic fluxes or for cell storage. In Fig. 2, we identify

pathways in the circle by plotting their names at the average

angular position of all their constitutive reactions.

Pathway localization

In Fig. 3 and 4, we propose two complementary representations

of the metabolic pathways of E. coli as they appear annotated in

the BiGG database. In Fig. 3, we show the angular distribution

on the ring of the whole list of pathways (up to 33, plus an

unassigned category of reactions not represented in the figure),

evaluated from the circle-based embedding of the reactions they

involve. We recognize rather disparate spectra of angular

distributions. Strongly localized pathways, e.g. the Folate

pathway or Oxidative Phosphorylation, coexist with more

distributed ones. The latter can adopt either an angular

distribution with two or more maxima, e.g. the Histidine

and Glycolysis pathways, respectively, or can even transver-

sally spread over the ring closer to a homogeneous distribu-

tion. The Alternate Carbon, the Transport Inner Membrane,

or the Cofactor and Prosthetic Group pathways are represen-

tative examples of the latter category (see Table S1 in ESIw for

further details). Our method is, therefore, able to discriminate

concentrated pathways, consistent with the classical view of

modular subsystems, from others which are indeed formed of

subunits, and even from those finally responsible for producing

or consuming metabolites in turn extensively used by many

other pathways.

The embedding of reactions and metabolites in the circle can

also be used to aggregate pathways into broader categories. To

do so, the embedding circle is first divided into eleven different
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angular sectors delimited by void regions in the ranked

distribution of reaction angles, see Fig. 4a and ESIw for a

precise definition of these angular sectors. These sectors stand

as potential biochemical modules defined by chemical affinity

(distance in the metric space). The pathway concentration, i.e.

the fraction of reactions of that pathway in each sector, is

shown in Fig. 4b–l. Clearly, there are sectors monopolized by

one or at most two pathways—e.g., Murein in Sector 10,

Fig. 4k—whereas other sectors are largely shared by many

pathways—e.g., different Amino acid-based pathways in

Sector 7, Fig. 4h. In all cases, the higher concentrations in each

sector mostly correspond to pathways in related functional

categories. Sector 1 and Sector 2 (Fig. 4b and c) aggregate

pathways related to Cell Membrane metabolism. Biochemical

reactions in Sectors 3–5 (Fig. 4d–f) focus on the processing of

methyl groups, with Sector 3 aggregating part of the related

sulfur-containing amino acid pathways Cysteine and Methionine,

Sector 4 dominated by the Folate pathway (folate is for instance

necessary for the regeneration of methionine), and Sector 5

basically populated by reactions in the Nitrogen and Methyl-

glyoxal pathways, both producing metabolites upstream of

central metabolism. Sector 6 and Sector 7 (Fig. 4g and h)

concentrate on central metabolism, with Sector 6 including

Energy and part of the Nucleotide metabolism and Sector 7

including Amino acids metabolism. Sector 8 (Fig. 4i) condenses

the remaining Nucleotide metabolism. Finally, Sector 9, Sector

10, and Sector 11 (Fig. 4j–l) account for Glycan metabolism,

with Sector 9 mixing basically mono and polysaccharide related

pathways, Sector 10 comprising pathways related to murein, a

polymer that forms the cell wall, and Sector 11 containing the

remaining fraction of the Methylglyoxal pathway (producing

pyruvate redirected to cell wall biosynthesis) and an important

Fig. 2 Global geometric map of E. coli’s metabolism. Angular distribution of reactions and metabolites inferred by the method. Yellow circles

represent reactions whereas blue squares are metabolites. For each metabolite, the symbol size is proportional to the logarithm of the degree and radially

placed according to the expression r= R� 2 lnkm. Black (grey) connections are those that according to the model have a probability of existence larger

(smaller) than 0.5. The names of the different pathways, radially-written, are located at the average angular position of all the reactions belonging to a

given pathway, and the font size is proportional to the logarithm of the number of reactions in the pathway. Note that we do not represent transversal

pathways and that some pathways seem to be located in empty regions (e.g. Inorganic Ion Transport). This is due to the fact that some pathways display

angular distributions with two or more maxima so that the average appears in between the peaks, see Fig. 3 and Table S1 in ESI.w
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part of the metabolism of Histidine (also with a regulatory role

in the same function).

The corresponding representations for human metabolism

are shown in the ESIw, Fig. S4 and S5. The number of

pathways is considerably larger but common features to

E. coli pathway localization patterns are evidenced in quali-

tative terms. Pathways can be divided again into different

categories according to their angular concentration, with the

difference that the general level of pathway localization in

human metabolism is higher than in E. coli. The average

angular concentration of pathways in human metabolism is

0.82, as compared to 0.79 in E. coli (see Methods) and the

average size of maximum peaks in the pathways angular

distributions is 0.36 for E. coli while for human metabolism

it is 0.50. However, the higher level of localization seems to

coexist with a higher entanglement of the different families of

metabolic reactions, i.e. carbon metabolism, lipid metabolism,

etc. Another observation is that transversal pathways in

E. coli, like Cofactor and Prosthetic group or Transport, are

split into a number of more specialized pathways in human

metabolism and, in fact, the category of transversal pathways

itself, as defined in E. coli, is here minimally represented.

Cross-talk between pathways

Sectors, as proposed in the previous section, stand as potential

biochemical modules defined by chemical affinity (distance in

the metric space). However, classical pathways have been

considered until now to be meaningful functional groups.

Fig. 3 Angular distribution of biological pathways in E. coli. The

whole angular domain [01,3601] is divided into 50 bins of 7.21 each and

for each bin we compute the fraction of reactions of the pathway in it.

Each pathway is shown in a different graph. Different colors indicate

different general metabolic classes: red for Amino acids metabolism

(numbering the graphs from left to right and from top to bottom,

1–10), orange for metabolism of Cofactors and Vitamins (11 and 12),

violet for Nucleotide metabolism (13 and 14), magenta for tRNA

charging (15), turquoise for Carbohydrate metabolism (16–22), grey

for Alternate Carbon metabolism (23), blue for Energy meta-

bolism (24,27), green for Transport pathways (25 and 26), brown for

Glycan metabolism (28–30), and maroon for Lipid metabolism

(31–33). Pathway names have been abbreviated in standard forms

whenever possible, see ESI.w

Fig. 4 Sector modules for E. coli metabolism. Reactions in related

functional categories are observed to aggregate in specific regions of the

circle. The whole angular domain is divided into eleven different angular

sectors delimited by void regions in the ranked distribution of reaction

angles. This distribution and the angular sectors (each in a different color)

are given in the left upper graph of the panel. The remaining graphs show

the pathway concentration, the fraction of reactions of that pathway, in

each sector. The higher concentrations in each sector mostly correspond to

pathways in related functional categories. S1 and S2 (plots b and c)

aggregate pathways related to Cell Membrane metabolism; Sectors 3–5

(plots d–f) are focused on the processing of methyl groups, with Sector 3

aggregating part of the sulfur-containing amino acid pathways Cysteine

and Methionine, Sector 4 dominated by the Folate pathway (folate is for

instance necessary for the regeneration of methionine), and S5 populated

by reactions in the Nitrogen andMethylglyoxal pathways, both producing

metabolites upstream of central metabolism; S6 and S7 (plots g and h)

concentrate on central metabolism, with S6 including Energy and part of

the Nucleotide metabolism and S7 including Amino acids metabolism; S8

(plot i) condenses the remaining Nucleotide metabolism; finally, S9–S11

(plots j–l) account for Glycan metabolism, with S9 mixing mono and

polysaccharide related pathways, S10 comprising pathways related to

murein, a polymer that forms the cell wall, and S11 containing the

remaining fraction of the Methylglyoxal pathway and an important

part of the metabolism of Histidine, both with a role in the cell wall

biosynthesis. Pathway names have been abbreviated in standard forms

whenever necessary, see ESI.w
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Therefore, it is natural to reanalyze classical biochemical

pathways at the new light of our embedding. One way is to

look at the angular distribution of their reactions in the circle,

as it is done in Fig. 3. Another way is to take advantage of the

estimated connection probability derived from the embedding for

every pair reaction–metabolite to compute the strength of the

interaction between every pair of pathways. This information can

be used to build a higher hierarchical level in the architecture of

the metabolic network: the network of pathways.

In this new network, pathways are the nodes whereas the

strength of the interaction between a pair of pathways is

computed on the basis of the corresponding lists of reactions

in each pathway and the set of metabolites shared by both.

When the set of overlapping metabolites is not empty, the

connection probabilities for the observed links between path-

way reactions and common metabolites are summed to give an

absolute measure of the strength of the interaction between the

pair of pathways, see ESI.w Overlaps between pathway pairs

assemble a higher order weighted network where pathways are

nodes and links display heterogeneous intensities. However, the

resulting network is very dense and needs to be conveniently

filtered in order to provide meaningful information about the

system. In E. coli, 460 out of a potential total of 561 pathway pairs

overlap while for human cells 1689 pathway pairs out of 4278 have

common metabolites. In practice we use a disparity-based

threshold27 (see Methods) that discards links whose intensities

are compatible with random fluctuations at some specific

significance level. As a result these pathway-based networks

provide metabolic backbones, i.e., subnetworks of pathways

which display the statistically relevant interactions.

As an illustration of the power of the metabolic backbone

concept, panels in Fig. 5 reproduce backbones for E. coli and

human metabolisms. We selected those with the closest con-

fidence level to the standard values 0.05 and 0.01, respectively,

that optimize the trade-off between maximum number of

pathways and weight versus minimum number of interactions

in the filtered network. Interestingly, metabolic backbones

offer a perspective that reveals functional constraints. Both

for E. coli and human metabolism, star-like patterns are

particularly neat. In E. coli, transversal pathways act as hub-like

structures that interconnect different number of specific and

more localized pathways, usually belonging to the same meta-

bolic family. For instance, the Cofactor and Prosthetic Group

Biosynthesis pathway connects many of the amino acid pathways

to energy or nucleotide metabolism, and Alternate Carbon acts

as the main intermediary of many Carbohydrate pathways with

the rest of the backbone. Analogously, some pathways in the

metabolic backbone of the human cell, like Folate or Fatty Acid

Oxidation or Keratan Sulfate Biosynthesis, play a relevant role in

providing systems’ level connectivity to the network and connect

a number of other specific pathways.

Discussion

From a broad perspective, a cartographic representation of

complex networks15 supposes to map the positions of nodes in

an underlying geometric space and shares some fundamental

problems with traditional geographical cartography on what

concerns techniques, generalizations or design: how to represent

the topology of the mapped network on the metric space,

which characteristics of the network are not relevant to the

map’s purpose and can be eliminated, how to reduce the

complexity of the characteristics that will be mapped, etc.

Despite the difficulties, cartographic maps based on geometrical

spaces are crucial to identify dominant nodes, to understand

how different subparts of the system, like pathways in our

context, relate to each other, to back up more accurate methods

of prediction of missing and spurious interactions,28,29 or to find

optimal transport routes.

In our metabolic maps, the astonishing congruency between

the architecture of metabolic networks and the underlying

geometry is supported by a biochemical interaction law that,

irrespective of the studied organisms, of the nature and complexity

of the reactions they account for, or of the different structural label

of the metabolites they involve, seems to comply with a simple

Newtonian-like form and allows us to make predictions about the

probabilities of interaction among sets of metabolites forming

reactions. Specifically, the sum of the probabilities running over all

the metabolites participating in a certain biochemical reaction can

be interpreted as a topological version of the well-known concept

of reaction-based affinity, and each summand could thus be

Fig. 5 Metabolic backbones displaying pathway’s cross-talks inferred

from the model. (a) Metabolic backbone for E. coli metabolism at the

0.064 confidence level with 30% of the original total weight, 91% of the

original number of pathways, and 9% of the original links. (b) Metabolic

backbone for human cells at the 0.022 confidence level, with 20% of the

original total weight, 69% of the original number of pathways, and 5% of

the original links. Different colors indicate different metabolic families.

The area of a circle representing a pathway is proportional to its size in

number of reactions. The weights in the connections are proportional to

the intensity of the cross-talk between the pathways. Pathway names have

been abbreviated in standard forms when necessary, see ESI.w

Pu
bl

is
he

d 
on

 0
6 

Ja
nu

ar
y 

20
12

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

t d
e 

B
ar

ce
lo

na
 o

n 
11

/8
/2

02
1 

10
:4

1:
42

 A
M

. 
View Article Online

https://doi.org/10.1039/c2mb05306c


This journal is c The Royal Society of Chemistry 2012 Mol. BioSyst., 2012, 8, 843–850 849

identified with the chemical potential of that particular metabolite

in relation to its chemical partners in the particular reaction. Our

results point to a systems level definition of chemical affinity in

terms of network-based probabilities of interaction which depend

on the distances in the underlying geometric space and on intrinsic

properties of nodes which convert some of them in hubs.

Such probabilistic network-based chemical affinities allow

us to recover the established biochemical organization of

pathways as connected metabolic families, but at the same

time raise new questions claiming for the need of rethinking its

classical definition as self-contained units. We find that differ-

ent pathways may have disparate internal structures, some of

them being more modular and conforming better to the

classical definition, while subunits pointing to differentiated

functionalities can be distinguished in others. We have also

unveiled a higher level of systems’ level interactions repre-

sented by metabolic backbones, defined on the basis of a

quantitative cross-talk between pathways. This particular idea

advises us against the use of very specific biochemical protocols

aimed to single-out particular pathways as they might be prone to

underestimate the delicate connections that underlay the net and

secure its proper functioning. Such metabolic features are common

to human cells and E. coli. However, a comparative study shows

that pathways in human metabolism are in general more modular

and display less overlap of common metabolites with other

pathways. At the same time the different human metabolic families

are more entangled and sectors are more difficult to characterize, a

possible signature of a higher functional complexity or merely a

side effect of the kind of reconstruction that mixes in a single

network reactions that occur in diversely differentiated cells.

Summarizing, in this work we provide cartographic maps of

two representative metabolisms that capture their specific

complexities, explaining many of their system properties,

and provide a new perspective on the definition, cross-talk,

and hierarchical organization of biochemical pathways. These

maps, embedded in a simple geometric space, rely on a

probabilistic biochemical connectivity law which emerges

from the different physico-chemical forces acting at a mole-

cular level and that naturally conveys a higher interaction

likelihood to elements which are closer in the underlying space.

Similar maps for other biological networks are expected to be

equally congruent and to help transforming data into knowl-

edge and knowledge into understanding, paving the way for

new discoveries in systems biology prediction and control.

Funding

This work was supported by MICINN Projects No. FIS2010-

21781-C02-02, FIS2006-03525, and BFU2010-21847-C02-02;

Generalitat de Catalunya grants No. 2009SGR838 and

2009SGR1055; the Ramón y Cajal program of the Spanish

Ministry of Science; and the ICREA Academia prize 2010

funded by the Generalitat de Catalunya.

Methods

Hidden metric spaces and the S1 � S1
model

The S1 � S1 model can be used as a network generator as

follows:

(1) Nm metabolites and Nr reactions are homogeneously

distributed in a circle of radius R. The densities of metabolites

and reactions in the circle are dm = Nm/2pR and dr = Nr/2pR,
taken independent of the network size. Without loss of generality,

one of them can be set to 1.

(2) Metabolites and reactions are assigned expected degrees

km and kr, drawn from the probability densities rm(km) and
rr(kr), respectively. To model metabolic networks, we use

rm(km) E k�gm and rr(kr) = d(kr � hkri). Our choice of a

power law degree distribution of metabolites is motivated

by previous studies17 and by a direct measurement of this

distribution in our database, as shown in Fig. S1 (ESIw).
(3) Each possible pair metabolite/reaction—with degrees km

and kr and located at angular positions ym and yr—is visited

once and a link is created with probability

pðkm; ym; kr; yrÞ ¼ p
dmr

mkmkr

� �
; ð3Þ

where dmr = RDymr (Dymr is the angular separation) is the

distance metabolite/reaction in the circle. Function p can be,

a priori, any integrable function. However, the choice p(x) =

(1 + xb)�1 generates maximally random networks given the

constraints of the model.

See ESIw for extended details on the S1 � S1 model.

Inverse problem

Given a complex network representation, the inverse problem

of embedding the network in the hidden metric space amounts

to find the optimal position of every node in that underlying

geometry. The optimal coordinates would ensure that, given

the specific form of the connection probability in eqn (2), the

model has a maximum probability to reproduce the observed

topology. In general terms, the embedding is resolved using

statistical inference techniques, basically a maximum likeli-

hood estimation in combination with a Monte Carlo method

and a Metropolis–Hasting rule to explore and select possible

configurations in the underlying space.30 More precisely, the

likelihood functional is defined as

L �
YNm

m¼1

YNr

r¼1
p

dmr

mkmkr

� �� �amr

1� p
dmr

mkmkr

� �� �1�amr

ð4Þ

where amr is the bipartite adjacency matrix of the network,

defined as amr = 1 if metabolite m participates in reaction r

and zero otherwise. The bipartite nature of metabolic net-

works together with the fact that reactions and metabolites

have disparate degree distributions precludes to perform the

mapping in a single-step. Rather the embedding into the S1 �
S1 space runs in two phases: first the one-mode projection of

the metabolic subnetwork is embedded into a S1 space following

the numerical optimization procedures described in ref. 21, and

second the inferred angular coordinates of metabolites are used

as an input to adjust the position of each individual reaction

in the circle. See ESIw for a more complete description of the

S1 � S1 embedding algorithm.

The disparity filter

To extract the metabolic backbone of cross-talks between path-

ways we apply the multi-scale disparity filter defined in ref. 27.
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The disparity filter exploits local heterogeneity and correla-

tions among weights in complex weighted network representa-

tions to extract the network backbone by considering the

relevant edges at all the scales present in the system. It ensures

that small nodes in terms of strength (si = Sj�i–neighbors wji,

sum of incident weights to node i) are not neglected and that

the backbone remains connected and does not disaggregate

into separate clusters. The methodology preserves interactions

with a statistically significant intensity for at least one of the

two nodes the edge is incident to. To decide whether a

connection is relevant, the filter compares against a null

hypothesis which assumes that the local weights associated

to a node are uniformly distributed at random. In this way one

discounts intensities that could be explained by random

fluctuations. The disparity filter produces better results in

terms of preserving the maximum number of nodes and

weights in the backbone with the minimum number of links

as compared to a global threshold filter that selects all the links

with weights above a certain value, see ESIw, Fig. S3.

Average angular position and concentration of pathways

To find the average angular position of a given pathway and a

measure of its angular concentration (or dispersion), we use

the following method. Each reaction i of a given pathway

(with i = 1,. . .,Np reactions in it) is assigned a normalized

vector
-
ri pointing to the position of the reaction in a circle with

radius 1 using as an angular coordinate the one inferred by our

method. The average angular position of the pathway is then

defined as the angular coordinate of the average vector

h~ri �
P Np

i¼1~ri=Np. We use this method to plot the names of

the different pathways in Fig. 2. The length of the average

vector |h-ri| is a measure of the angular concentration of the

reactions. A value |h-ri| = 1 means that all reactions in the

pathway have the same angular coordinates whereas |h-ri| = 0

indicates a perfect homogeneous distribution over the circle.

References

1 B. Palsson and K. Zengler, Nat. Chem. Biol., 2010, 6, 787789.
2 B. O. Palsson, Systems Biology: Properties of Reconstructed
Networks, Cambridge University Press, Cambridge, 2006.

3 S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys., 2002, 51,
1079–1187.

4 R. Albert and A.-L. Barabási, Rev. Mod. Phys., 2002, 74,
47–97.

5 M. E. J. Newman, SIAM Rev., 2003, 45, 167–256.
6 S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks:
From biological nets to the Internet and WWW, Oxford University
Press, Oxford, 2003.

7 M. E. J. Newman, Networks: An introduction, Oxford University
Press, 2010.

8 J. S. Edwards, R. U. Ibarra and B. O. Palsson, Nat. Biotechnol.,
2001, 19, 125–130.
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