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The geometric renormalization technique for complex networks has successfully revealed the
multiscale self-similarity of real network topologies and can be applied to generate replicas at different
length scales. Here, we extend the geometric renormalization framework toweighted networks, where
the intensities of the interactions play a crucial role in their structural organization and function. Our
findings demonstrate that theweighted organization of real networks exhibitsmultiscale self-similarity
under a renormalization protocol that selects the connections with the maximum weight across
increasingly longer length scales.Wepresent a theory that elucidates this symmetry, and that sustains
the selection of the maximum weight as a meaningful procedure. Based on our results, scaled-down
replicas ofweighted networks can be straightforwardly derived, facilitating the investigation of various
size-dependent phenomena in downstream applications.

Renormalization of real networks1–4 can be performed on a geometric
framework1 by virtue of the discovery that the structure of complex net-
works is underlain by a latent hyperbolic geometry5,6. The likelihood of
interactions between nodes depends on their distances in the underlying
space via a universal connectivity law that operates at all scales and simul-
taneously encodes short- and long-range connections. This geometric
principle has been able to explain many features of the structure of real
networks, including the small-world property, scale-free degree distribu-
tions, and clustering, as well as fundamental mechanisms such as pre-
ferential attachment in growing networks7 and the emergence of
communities8,9. It has also led to embedding techniques that produce a
geometric representation of a complex network from its topologies10–14.

Given a network map, geometric renormalization (GR) applies
coarse-graining and rescaling steps on the topology of a network to
produce a multiscale unfolding over progressively longer length scales1.
This transformation has revealed multiscale self-similarity to be a ubi-
quitous symmetry in the binarized structure of real networks, and allows
to obtain scaled down replicas. However, the GR technique is restricted
to unweighted network representations. Information about the inten-
sities of interactions in networks can fundamentally change the picture
that emerges from the bare connections15–19. This poses the question of
whether the GR methodology could be generalized to explore weighted
networks at different resolutions, and whether their weighted structure is
self-similarly preserved in that case.

Adding toGRon the groundsof our previousfinding that thebinarized
structure of real networks is statistically self-similarwhen renormalized1, the
geometric renormalization of weights (GRW) should produce the multi-
scale unfolding of a network into a shell of scaled-down layers that preserves
not only the binarized structure but also the weighted structure of the
network in the renormalization flow. Here, we propose a theory for the
renormalization of weighted networks that supports the selection of the
maximum, or supreme, as an effective approximation to allocate weights in
the renormalized layers of real networks. Our theory is sustained by the
renormalizability of the WSD model20, which entails that the GRW trans-
formation should be a rescaled p-norm on the set of weights to be renor-
malized. Alternatively, the GR technique was recently extended to weighted
networks using an ad hoc approach that treats weights as currents or
resistances in a parallel circuit—renormalizing by the sum of the weights or
by the inverse of the sum of their inverses, respectively21. The two methods
are recovered as particular limits of our theory.

In this work, we present empirical evidence and a theoretical frame-
work that supports the self-similar organization of weights in real networks
when they are viewed at progressively longer length scales. We used three
renormalization approaches: sup-GRW, that allocates the weight of new
links in the renormalized layer by selecting the maximum weight of the
renormalized links; ϕ-GRW, the geometric renormalization transformation
for theweights in theWSD model, obtainedby imposing the preservationof
the relationbetween the strength anddegree of nodes in the renormalization
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flow; and sum-GRW, the summation approach recently introduced in
ref. 21. We found that, in practice, sup-GRW is a good approximation that
presents some advantages over the theoretical ϕ-GRW approach, while
sum-GRW only works under limited conditions. In addition, we leveraged
the multiscale self-similarity of weighted networks to introduce a protocol
that generates scaled down replicas.

Results
Evidence of geometric scaling in the weighted structure of real
networks
First, we present evidence that weights in real networks show geometric
scaling when conveniently coarse-grained and rescaled to produce renor-
malized versions. The technique assumes that real network topologies are
well described by the geometric soft configuration model S122, where each
network node i has popularity κi and similarity θi coordinates. Popularities
are hidden degrees that control expected degrees k in the network, and
similarities are angular coordinates in a 1-sphere. Equivalently, the S1

model is isomorphic to a purely geometric model, the H2 model, where
both the popularity and similarity attributes are encoded into the hyperbolic
plane23. In this representation, nodes reside in the hyperbolic plane where
the popularity coordinate determines the radial position whereas the
similarity (or angular) coordinate remains the same. In the S1 model, pairs
of nodes are connected by a Fermi-like probability function, which is also
gravity-like. This function grows with the product of popularities and
decreases with the distance between the nodes in the latent similarity space.
Real networks can be embedded in the latent space by employing statistical
inference techniques to identify the coordinates of the nodes that maximize
the likelihood that the topology of the network is reproduced by the
model10,14. Thesehyperbolic embeddings canbeobtainedusing themapping
tool Mercator14.

Once the geometric map of a real network has been produced and
nodes have associated coordinates in the latent space, the GRW transfor-
mation proceeds in two steps. Figure 1 illustrates the process. First, we zoom
out the resolution of the network by increasing the length scale at which it is
observed by applying theGR technique for unweighted networks defined in
ref. 1. GR proceeds by defining non-overlapping consecutive blocks, or
sectors, along the similarity circle of the network embedding. Each sector
contains r consecutive nodes, independently of whether these nodes are
connected. Given the distribution of nodes across the similarity space,
sectors could exhibit varying angular spans. Sectors are then coarse-grained
to form supernodes. The specific angular position of each supernode is not
relevant as far as it lays within the angular region defined by the corre-
sponding block so that the order of supernodes preserves the original order
of nodes. Finally, two supernodes are connected if there is at least one
connection between the nodes in one supernode and the nodes in the other
so that, in general, several connections are renormalized into a single link
between the two supernodes. In thisway,GRproducesa reduced self-similar
version of the topology of the network. When applied iteratively (bounded
to order logðNÞ steps due to the finite size of real networks), the transfor-
mation selects longer range connections in a progressive fashion, and the
average degree becomes a relevant observable that grows in the renorma-
lization flow1. The GR transformation is valid for uneven supernode sizes
as well.

The second step in GRW proceeds by assigning intensities to the links
in the renormalized layer as a functionof theweights in the original layer. To
defineweights in the renormalized layer, different prescriptions are possible.
First, we define the weight of the link between two supernodes as the
maximum, or supremum, of the weights among the existing links between
their constituent nodes in the original layer.We name this prescription sup-
GRW. The whole operation can be iterated starting from the original net-
work at layer l = 0 and the set of sup-GRW network layers l—each r times
smaller than the original one—forms a multiscale weighted shell of the
original network.

We applied the sup-GRW technique with r = 2 to 12 different real
weighted networks with heterogeneous degree distributions from very

different domains, including biology, transportation, knowledge, and social
systems. More details of the datasets are available in “Methods” and the
main statistical properties are in Supplementary Table 1 in Supplementary
Note 1. The features that characterize the weighted structure of two of the
renormalized weighted networks are shown in Fig. 2 (see Supplementary
Figs. 1–4 for the rest in SupplementaryNotes 2 and 3.1, where we report the
topological and weighted features of the real networks along the renorma-
lization flow). Apart from the weights associated to the links, wij, we also
considered the strength of nodes (sum of the weights of incident links),
si =∑jωij, and the disparity, Yi, which quantifies the local heterogeneity of
the weights by measuring their variability in the links attached to a given
node (see “Methods”). The complementary cumulative distribution func-
tions of weights, Pc(ω), in Fig. 2a, i, and strengths, Pc(s), in Fig. 2b, j display
heterogeneity and show self-similar behavior across layers l, meaning that
the curves collapse once weights and strengths are rescaled by the average
weight and by the average strength, respectively, in the corresponding layer.
The power-law relations between strength and degree, s(k), in Fig. 2c, k also
overlap once the degrees are rescaled by the average degree of the layer. We
also show the disparity of the weights averaged over degree classes, Y(k), in
Fig. 2d, l. This function shows a downward trend as a function of the degree
and again remains statistically invariant across layers. Notice that, by con-
struction, the averageweight in the sup-GRWlayers growswith l.While this
behavior does not add fundamental information to characterize the
description of the weighted structure of the network, it may still be inter-
esting to know how 〈w〉(l) depends on the scale of observation l for some
specific system, given that weights may be given in some real-world units
(see SupplementaryFigs. 5 and6 for the rescaled andunrescaledflowsof 〈w〉
and 〈s〉).

Note that the sup-GRW transformation has semigroup structure with
respect to the composition, as fulfilled by GR in the unweighted case,

Fig. 1 | Geometric renormalization of weights (GRW). Each layer is obtained after
a GRW step with resolution r starting from the original network in l = 0. Each node i
in red is placed at an angular position on the similarity circle and has a size pro-
portional to the logarithmof its hidden degree. Straight solid lines represent the links
in each layer with weights denoted by their thickness. Coarse-graining blocks cor-
respond to the blue shadowed areas, and dashed lines connect nodes to their
supernodes in layer l+ 1. Two supernodes in layer l+ 1 are connected if and only if
some node of one supernode in layer l is connected to some node of the other, with
the supremum among the weights of links between the constituent nodes as the
weight of the new connection (dark blue links give an example). The GRW trans-
formation has semigroup structure with respect to the composition. In the figure, the
transformation with r = 4 goes from l = 0 to l = 2 in a single step.
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meaning that a certain number of iterations with a given coarse-graining
factor are equivalent to a single transformation with a higher coarse-
graining factor (see Supplementary Fig. 7 in Supplementary Note 3.2 for
results supporting this claim).

We also tested an alternative prescription, referred as sum-GRW,
where weights in the new layer are assigned by summing the weights of
existing links between the nodes in supernodes, following the prescription
described in ref. 21. While this strategy proves effective for many real net-
works, there are certain cases in which self-similarity is not maintained in
the renormalization flow. When sum-GRW is applied, the global dis-
tribution of weights, the local heterogeneity of weights in nodes, and the
relation between strength and degree become increasingly heterogeneous
compared to the original graph. This is observed in the Openflights and the
scientific collaboration network, as illustrated in Fig. 2e–h, m–p (see Sup-
plementary Figs. 8 and 9 in Supplementary Note 4 for the rest).

Geometric renormalization of the weighted geometric soft
configuration model
We develop next the theoretical backup that predicts the obtained results
and clarifies in which situations each of the two approaches works well,
either selecting the supremum of the weights between supernodes or
their sum.

Geometric renormalization transformation for the weights. The
renormalization theory that allows to fully appreciate the observed self-
similarity is based on the WSD model20, which extends the geometric

interpretation of real networks to the weighted organization. The WSD

model couples the weights of a network to the same underlying metric
space to which the topology is coupled in the SD model, the general-
ization of the S1 model to D dimensions22.

As in theS1 model, in theSD model the coordinates of the nodes in the
latent space represent popularity and similarity dimensions and distances
between nodes determine the probability of connection, that reads
pij ¼ 1=ð1þ χβijÞ, where χij ¼ dij=ðμκiκjÞ1=D, dij is the distance in SD

between nodes i and j, μ controls the average degree, β >D controls the
clustering of the network ensemble and quantifies the level of coupling
between the network topology and the metric space, and D is the dimen-
sionality of the similarity space. The popularity dimension of node i is
associated with its hidden degree κi such that higher hidden degree nodes
havemore chance to connect to others. Thehiddendegree is proportional to
the expected degree, and it is equivalent to a radial coordinate in the purely
geometric formulation of the model, theHDþ1 model23.

The embedding tool Mercator14 generates the real network embed-
dings based on themodel inD = 1, where the similarity space is represented
as a one-dimensional sphere or circle of radius R =N/(2π), so that the
density of nodes is set toone. Everynode ihas an angular coordinate θi in the
circle, and angular distances dij = RΔθij between pairs of nodes stand for all
factors other than degrees that affect the propensity of forming connections,
such that nodes closer in the similarity space have a higher likelihood of
being connected.

In the WSD model, weights are assigned on top of the topology gen-
erated by theSD model. The weight between two connected nodes i and j is

Fig. 2 | Self-similarity of the geometric renormalization of weights (GRW) in real
networks. The complementary cumulative distribution functions of weights and
strengths, the relation between strength and degree, and the disparity of weights in
nodes are shown in (a–d) for sup-GRWand in (e–h) for sum-GRWof theOpenfligts
network. The same measures are in (i–l) for sup-GRW and in (m–p) for sum-GRW
of the Collaboration network. The variables wres, sres, and kres refer to the weights,
strengths, and degrees k rescaled by the average weight, average strength, and

average degree in the layer, respectively. Theweighted renormalization scheme, sup-
GRW, selects the weight of the link between two supernodes as the maximum, or
supremum, of the weights among the existing links between their constituent nodes
in the original layer. Alternatively, in the sum-GRWscheme, weights in the new layer
are assigned by summing the weights of existing links between the nodes in
supernodes. The number of layers in each system is determined by their original size,
and r = 2 in all cases.
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given by:

ωij ¼ ϵij
νσ iσ j

κiκj

� �1�α=D
dαij

: ð1Þ

The hidden variable σi is named the hidden strength and it is related to the
observed strength of node i, that is, the form of Eq. (1) and the convenient
selection of the free parameter ν guarantees that the expected strength of
node i in the generatednetworks,�si, is proportional toσi,�si / σ i, in the same
way as �ki / κi is guaranteed in the SD model. The distance dij refers to the
distance between the nodes in the similarity space, and 0⩽ α <D is the
coupling of the weighted structure to the metric space such that if α = 0
weights are independent of the underlying geometry and maximally
dependent on degrees, while α =D implies that weights are maximally
coupled to the underlying metric space with no direct contribution of the
degrees. Finally, ϵij is a random variable with mean equal to one and the
variance of which regulates the level of noise in the network. Further on, we
will assume the noiseless version of the model to simplify analytical calcu-
lations, that is, ϵij = 1 ∀ (i, j).

To control the correlation between strength anddegree,whichfixes the
strength distribution, we assume a deterministic relation between hidden
variables σ and κ of the form σ = aκη, yielding s(k) ~ akη as observed in real
complex networks. Working under this assumption, a valid GRW trans-
formation should preserve the relation between strength and degree, and in
particular the exponent η, meaning that the renormalized hidden degree
and strength should satisfy σ 0 ¼ a0ðκ0Þη (to simplify notation, we have used
prima to denote quantities in the renormalized layer).

To find this transformation, the geometric renormalization equations
for the topology have to be combinedwith Eq. (1). From (1), the coordinates
of supernodes κ0 and θ0 in the renormalized map are:

κ0 ¼
Xr
j¼1

ðκjÞβ
" #1=β

and θ0 ¼
Pr

j¼1 ðθjκjÞβPr
j¼1 ðκjÞβ

" #1=β
; ð2Þ

where the sums run over the r nodes that are coarse-grained to form the
supernodes. Global parameters need to be rescaled as μ0 ¼ μ=r, β0 ¼ β, and
R0 ¼ R=r. By imposing the preservation of the relationship between
strength and degree, and using Eq. (1), we obtain the following expression
for the renormalized weights (see derivation in “Methods”):

ω0
ij ¼ C

Xr2
e¼1

wmn

� �ϕ
e

" #1=ϕ
; ð3Þ

where the sum runs over the links between nodes within supernodes i and j.
The new variable ϕ � β

Dðη�1Þþα is a parameter that depends on the weighted
and unweighted structure of the network, and C ¼ ν0

ν
a0
a

� �2
rα=D. In practice,

however, we rescaleweights by the averageweight in each layer, as explained
above, so constant C plays no role. Notice that Eq. (3) is a p-norm (also
related with a generalized mean), where p = ϕ. Therefore, the weighted
model predicts that, given a network with a specific value of ϕ, the GRW
transformation of weights Eq. (3), that we name ϕ-GRW, preserves the
exponent η characterizing the relation between strength and degree. At the
same time, since the distribution of hidden degrees is assumed to be pre-
served by GR, the distribution of hidden strengths and the distribution of
weights are also preserved. This is valid as long as β > (γ− 1)/2. Otherwise,
the power-law distribution of hidden degrees loses its self-similarity in the
unweighted renormalization flow and this breaks the self-similarity of the
statistical properties of the binarized network and theweighted counterpart.
Also, note that the ϕ-GRW transformation has semigroup structure with
respect to the composition for any value of ϕ, as also fulfilled by sum-GRW.

We validated our theoretical results for ϕ−GRW in the real networks
analyzed in this work (Supplementary Figs. 10 and 11 in Supplementary

Note 5.1). For all the networks, we estimated the exponent η and the
parameter a that controls the coupling between strengths and degrees by
adjusting apower-law to the empirical data.The coupling constantα and the
level of noise were inferred by using the triangle inequality violation spec-
trumas described in ref. 20. See SupplementaryTable 1, wherewe report the
specific values for each network.

We also checked ϕ−GRW, including its semigroup structure prop-
erty, in synthetic networks with a scale-free degree distribution and realistic
values of clustering, results are shown in Supplementary Figs. 12–16 in
Supplementary Note 5.2. The synthetic networks were produced with the
WS1 model for different values ofα andηobtaining, thus, different values of
ϕ, which were calculated using the parameters employed to generate the
networks.

For all the real and synthetic networks, we measured the distributions
of weights and strengths, and the power-law relation between strength and
degrees in the multiscale unfoldings obtained by applying ϕ−GRW (see
Supplementary Figs. 10–16). In all cases, the self-similar behavior is clear
across length scales, which validates our analytic calculations.

Flow of the average strength. The preservation of the relation σ = aκη

allows us to approximate analytically the flow of the average strength
from the flow of the average degree. In GR, the average degree changes
from layer to layer approximately as 〈k〉(l+1) = rξ〈k〉(l), with a scaling factor
ξ depending on the connectivity structure of the original network1.
Combining this with Eq. (3) and imposing that the rescaling constant of
weights C does not change in the flow, we obtain:

hσ 0i ¼ hσirψ ;ψ ¼ α

D
þ 2η� 1

� �
ξ � α

D
; ð4Þ

which, due to the proportionality between observed and hidden strength,
implies that the flow of the average observed strength follows the same
scaling. Therefore, inD = 1, the strength increaseswith a factor that depends
on the exponent η characterizing the scaling between strength and degree,
the coupling α between topology and geometry, and the scaling factor ξ for
the flow of the average degree, see the “Theoretical derivation of the
renormalized weights” in “Methods” for details. As shown in Fig. 3, the
analytic approximation for the relative growth of the average strength as a
function of the average degree can be expressed as follows:

hsiðlÞ ¼ hsið0Þ hkiðlÞ
hsið0Þ

 !ψ
ξ

; ð5Þ

which agrees with the measurements in synthetic networks where the
average weight may increase, stay flat, or decrease in the flow.

Reconciling sup-GRW and ϕ−GRW
Notice that the transformation in Eq. (3) is aϕ-norm, a generalization of the
Euclideannorm that becomes progressively dominated by the supremumof
the (absolute values of the) terms wmn in Eq. (3) as ϕ increases. In fact, the
sup-GRW prescription is recovered in the limit ϕ =∞ of ϕ-GRW. In
addition, renormalizing by the sum is equivalent to setting ϕ = 1, and the
renormalization of weights by the inverse of the sum of inverse values
corresponds to ϕ =−1.

To clarify the efficacy of approximating ϕ−GRW as sup-GRW, we
checked the asymptotic behavior of the ϕ-norm as a function of the number
of elementsE in the set {ωmn} and of the level of heterogeneity in theweights
(see Supplementary Note 6 for more details).We simulated weights using a
distribution pðωmnÞ∼ω�δ

mn, where exponent δ allowed us to tune the level of
heterogeneity, and produced sets of weights that were renormalized using
Eq. (3) with C = 1 and different values of ϕ. We also renormalized the same
sets using the alternative sum and supremum prescriptions, the results are
shown in Supplementary Figs. 17 and 18 of Supplementary Note 6.1. In
Fig. 4, we display the result of applying the supremum or the sum
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prescriptions as compared with the renormalized weight calculated for
different values of ϕ using the distributions of weights in two of the real
networks analyzed in this paper, see Supplementary Figs. 19 and 20 in
Supplementary Note 6.2 for the rest.

In heterogeneous networks with a markedly scale-free character of the
weight distribution, very small deviation from the supremum are observed
only for very low values of ϕ and only for low values of the weights. As E
becomes larger and thedegree distributionbecomesmorehomogeneous the
deviations increase progressively. As expected, increasing values of ϕ
decrease the divergence between the ϕ-norm and the supremum estimator.
In any case, good agreement is found between the ϕ-norm and the selection
of the supremum in a wide range of parameter values that include those for
realistic networks and the deviation, when existing, is in general very mild.
The curves for ϕ = 1 lying on the diagonal means that sup-GRW and sum-
GRW lead to the same renormalized weights (for instance the JCN in
Supplementary Figs. 19 and 20). This happens for some empirical weight
distributions, which explainswhy there is no difference between sum-GRW
and sup-GRW in some cases. However, in general the relation between
hidden strength and hidden degree is not preserved under sum-GRW. See
Methods for more details.

Finally, the random protocol for the selection of the weight between
two supernodes would always result in self-similarity of the distribution of
weights if links between nodes in the same supernode were also taken into
account in the selection set, independently of the topological and weighted
features of the network. However, those interactions are coarse-grained and
the balance between the weights in links between nodes inside supernodes
and in links between nodes in different supernodes, which determine the
selection set, dictates in which situations the random selection works.
Experiments in synthetic networks, Supplementary Figs. 21 and 22 in
Supplementary Note 7.1, prove that heterogeneity in the distribution of
weights, as found in many real networks, favors a better self-similar scaling
of their distribution. Decreasing the coupling of weights with topology and
geometry in theWSD model producesmore homogeneous distributions of
weights, which causes the loss of self-similarity in the flow. In E. coli, the
distribution of weights is affected under the random prescription, see
Supplementary Fig. 23 in Supplementary Note 7.2.

All together, the results imply that sup-GRW is a good approximation
that presents some advantages overϕ-GRW, like avoiding the estimation of
parameters for the coupling between the weighted structure of the network
and the underlying geometry which, in practice, is difficult to estimate.

Fig. 4 | Asymptotics of the ϕ-norm in the geometric renormalization of
weights (GRW). The renormalized weight ω0ðϕ ¼ 1Þ and ω0ðϕ ¼ 1Þ versus ω0ðϕ�Þ,
where ϕ* is the inferred value ϕ* = β/(η− 1+ α), for different number of links E
between the constituent nodes of two supernodes are displayed in (a–c) for Open-
flights and in (d–f) for Collaboration.Note thatwhen r = 2, the number of linksE can

have values 1, 2, 3 or 4, and that sum-GRW corresponds to the case ϕ = 1 while sup-
GRW to ϕ =∞. We used the sets {ωmn} following the coarse-graining in the real
network, and performed an iteration of ϕ−GRW to calculate the renormalized
weight ω0 with Eq. (3).

Fig. 3 | Analytic approximation vs. simulations. a Unrescaled average weight for
different layers l. b Average strength, 〈s〉 as a function of average degree 〈k〉, in which
symbols are the simulated results and lines indicate the corresponding theoretical
analysis fromEq. (5). The synthetic networks are generatedwith γ = 2.7, β = 1.5,α = 0.4
and η = 1.2 for Net 0; γ = 2.7, β = 1.5, α = 0.4 and η = 1.8 for Net 1; γ = 2.2, β = 2.0,
α = 0.4 and η = 1.5 for Net 2; γ = 2.2, β = 2.0, α = 0.6 and η = 1.5 for Net 3. The other
parameters are fixed as N = 64,000, 〈k〉 = 5, a = 100 and 〈ϵ2〉 = 1.0. Error bars repre-
senting the standard error of the estimated averages are smaller than the symbol size.
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In summary, renormalizingweights simply by the supremum is a good
and convenient approximation for real networks. It is equivalent to setting
ϕ =∞ anddue to the nature of the transformation it is effectively reached for
relatively lowvalues ofϕ. In addition, renormalizingby the sum is equivalent
to setting ϕ = 1, which in general does not preserve the exponent η of the
relation between σ and κ (see “Methods” for analytical calculations), and the
same is valid for renormalizing weights by the inverse of the sum of inverse
values, recovered when ϕ =−1.

Scaled down replicas of weighted networks
From the practical point of view, scaled down replicas of weighted net-
works are straightforwardly derived from the results with sup-GRW. The
generation of a scaled-down replica involves obtaining a reduced version
of the topology, as described in ref. 1, and subsequently rescaling the
weights in the renormalized network layer to match the level of the ori-
ginal network. The detailed procedure can be found in scale down replicas
in Methods, and the results for the scaled-down replicas of real weighted
networks are presented in Supplementary Figs. 24–27 in Supplemen-
tary Note 8.

Discussion
One of the big questions in science, and particularly important for the
comprehension of complex systems, is to understand which are the scales
relevant to a given phenomenon andhow these scales are interrelated. The
geometric renormalization of complex networks provides a powerful
framework todisentangle the intricacyof length scales in their structure by
progressively selecting longer range connections, and uncovers self-
similarity as a ubiquitous symmetry in the multiscale organization of real
networks. The generalization of the renormalization framework to
weighted networks introduced in this manuscript proves that the multi-
scale self-similarity is still preserved in a wide variety of weighted real
networks if the proper renormalization scheme is applied. In addition,
weights are the result of processes determining the intensities of interac-
tions and the self-similarity found in the weighted structure of real net-
works suggest that the same laws rule those processes at different length
scales.

We offer here an effective explanation for the self-similar behavior
observed in the real networks analyzed in this work based on two keystones:
the goodness of the WSD model to reproduce the organization of real
weighted networks, and its renormalizability under the ϕ-GRW transfor-
mation of weights, that preserves the relation between strength and degree
across scales. Estimating the value of parameter ϕ in practice is, however,
complicated and we have proved that using instead the sum-GRW pre-
scription, which selects the maximum weight among the renormalizable
links, is a very good and manageable approximation.

The weighted renormalization technique is, thus, well grounded on
theoretical results that assume that weights display no noise. In general, this
is not the case in real networks. In any case, it is remarkable that the
transformation suggested by the models is approximated with high fidelity
by connecting supernodes using the maximum weight between nodes
belonging to them, an extremely simple transformation easily applicable to
real networks despite the large levels of noise that they display. This justifies
our view thatnoisewill not changequalitatively the results reportedhere and
the study of its role can be postponed for future work.

Beyond theoretical considerations, scaled down replicas of weighted
networks can be straightforwardly produced using our weighted renor-
malization framework. These replicas could be used as testbeds for the
scalability of expensive computational protocols or to study any process in
which the scale or the size of real networks have a role, including for example
finite size scaling analysis in phase transitions or size-dependent stochastic
resonance phenomena. The generalization of the geometric branching
growth model24—that reverses GR to explain the self-similar evolution of
real growing networks—to weighted networks will be needed to produce
scaled up replicas.

Overall, the present work represents another important step forward
toward an integral framework for the renormalization of network struc-
ture, a prerequisite for renormalizing dynamical processes on real net-
works in the geometric approach. In traditional real space renormalization
schemes in physics, the spatial embedding in which the physical process
takes place is trivially self-similar under length scale transformations and
all the efforts can be directed toward the renormalization of the physical
process and the corresponding Hamiltonian. In contrast, specific prop-
erties of complex networks, like a strong hierarchy of degrees and the
small-world property, complicate the renormalization of network struc-
ture as the support of dynamical processes happening on top. It is, thus,
crucial to design a renormalization scheme for the structure of networks,
including weights, that produces self-similar renormalized versions as the
analogous to the renormalization of space in physical processes.

In this context, GRWworks in two steps, as explained above. First, GR
is applied to the binarized structure of the network to produce a multiscale
unfolding, and this step does not depend on theweights and the result is not
changed once weights are added to the description. Once the GR backbone
is obtained, GRW associates the weights to the renormalized links without
changing thedefinitionof length scalesor the coarse graining.An interesting
issue to explore in the future is the consistency of the introduced unpacking
of scales and the one enabled by geometric network models and techniques
where weights and links are integrated. The integrated model, currently
missing, would allow to embedweighted networks in their hyperbolic latent
space possibly defining an alternative similarity landscape and coarse
graining. However, due to the findings in this work and the goodness of the
WSD model to fit real networks, we do not expect divergent results. At the
same time, the renormalization of network structure needs to not only
account for the weights in the connections but also their directionality,
which is a relevant information in most real systems. This, again, goes
through extending hyperbolic network embedding methods, in this case to
directed networks.

Methods
Description of empirical datasets

• Cargo ships: the international network of global cargo shipmovements
consists of the number of shipping journeys between pairs of major
commercial ports in the world in 200725.

• E. coli: weights in the metabolic network of the bacteria E. coli K-12
MG1655 consist of the number of different metabolic reactions in
which two metabolites participate26,27.

• US commute: the commuting network reflects the daily flow of com-
muters between counties in the United States in 200028.

• Facebook-like Social Network (Facebook): the Facebook-like Social
Network originate from an online community for students at
University of California, Irvine, in the period betweenApril toOctober
200429,30. In this network, the nodes are students and ties are established
when onlinemessages are exchanged between the students. Theweight
of a directed tie is defined as the number of messages sent from one
student to another.We discard the directions for any link and preserve
the weight ωij with the sum of bidirectional messages, i.e.,
ωij =ωi→j+ωj→i. Notice that we only consider the giant connected
component of the undirected and weighted networks in this paper.

• Collaboration: this is the co-authorship network of based on preprints
posted to CondensedMatter section of arXiv E-Print Archive between
1995 and 199931. Authors are identified with nodes, and an edge exists
between two scientists if they have coauthored at least one paper. The
weights are the sum of joint papers. Notice that we only consider the
giant connected component of the undirected and weighted networks
in this paper.

• Openflights: network of flights among all commercial airports in the
world, in 2010, derived from the Openflights.org database32. Nodes
represent the airports. The weights in this network refer to the number
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of routes between two airports. We discard the directions for any link
and preserve the weight ωij with the sum of bidirectional weights, i.e.,
ωij =ωi→j+ωj→i. Notice that we only consider the giant connected
component of the undirected and weighted networks in this paper.

• Journal Citation Network (JCN): the citation networks from 1900 to
2013 were reconstructed from data on citations between scientific
articles extracted from the Thomson Reuters Citation Index33. A node
corresponds to a journal with publications in the given time period. An
edge is connected from journal i to journal j if an article in journal i cites
an article in journal j, and the weight of this link is taken to be the
number of such citations. In thiswork,weuse undirected andweighted
networks generated from 3 different time windows, 2008–2013,
1985–1990 and 1965–1975. The data are obtained from ref. 24.

• New Zealand Collaboration Network (NZCN): this is a network of
scientific collaborations among institutions inNewZealand.Nodes are
institutions (universities, organizations, etc.) and edges represent col-
laborations between them. In particular, two nodes i, j are connected if
Scopus lists at least one publication with authors at institutions i and j,
in the period 2010–2015. The weights of edges record the number of
such collaborations. The data are obtained from ref. 34. Notice that we
only consider the giant connected component of the undirected and
weighted networks in this paper.

• Poppy and foxglove hypocotyl cellular interaction networks: these
networks capture global cellular connectivity within the hypocotyl
(embryonic stem) of poppy and foxglove. Nodes represent cells and
edges are their physical associations in 3D space. Edges areweighted by
the size of shared intercellular interfaces, and nodes annotatedwith cell
type. Thedata are obtained fromref. 35.Network statistics canbe found
in Supplementary Table 1.

Network embedding to produce geometric network maps
We embed each considered network into hyperbolic space using the algo-
rithm introduced in ref. 14, named Mercator. Mercator takes the network
adjacencymatrixAij (Aij =Aji= 1 if there is a link betweennodes i and j, and
Aij =Aji= 0 otherwise) as input and then returns inferred hidden degrees,
angular positions of nodes and globalmodel parameters.More precisely, the
hyperbolic maps were inferred by finding the hidden degree and angular
position of each node, {κi} and {θi}, that maximize the likelihoodL that the
structure of the network was generated by the S1 model, where

L ¼
Y
i<j

pij

h iAij
1� pij

h i1�Aij
; ð6Þ

and pij ¼ 1=ð1þ χβijÞ is the connected probability.

The definition of disparity
The disparity of a node i quantifies the local heterogeneity of the weights
attached to it36, and is defined as:

Yi ¼
P
j

ωijP
j
ωij

� �2

¼P
j

ωij

si

� �2
; ð7Þ

whereωij is the weight of the link between node i and its neighbor j, and si is
the strength of node i. From this definition, it is easy to see that the disparity
scales as Y ~ k−1 whenever the weights are homogeneously distributed
among the links. Conversely, the disparity decreases slower than k−1

whenever the weights are heterogeneously distributed.

Theoretical derivation of the renormalized weights
Under GR, the hidden variables of supernodes in the resulting layer, κ0 and
θ0, are calculated as a function of the hidden variables of the constituent

nodes as:

κ0 ¼
Xr
j¼1

ðκjÞβ
" #1=β

and θ0 ¼
Pr

j¼1 ðθjκjÞβPr
j¼1 ðκjÞβ

" #1=β
: ð8Þ

The expressions above and Eq. (1) altogether imply that the renor-
malized weight should be:

ω0
ij ¼

ν0σ 0iσ
0
j

κ0iκ
0
j

� �1�α0=D
d

0α0
ij

¼ ν0ða0Þ2d0ij � α0 κ0iκ
0
j

� �η�1þα0=D

¼ ϵ0ijν
0ða0Þ2d0�α0

ij κ0iκ
0
j

� �β=D� 	Dðη�1Þþα0
β

¼ ν0ða0Þ2d0�α0
ij

Xr2
e¼1

κmκn
� �β=D

e

" #Dðη�1Þþα0
β

¼ ν0ða0Þ2d0�α0
ij

Xr2
e¼1

wmn

νa2d�α
mn

� � β
Dðη�1Þþα

e

" #Dðη�1Þþα0
β

:

ð9Þ

In the last step,we have assumed that, for every pair of nodes (m, n), we
can obtain the product κmκn from the corresponding weight ωmn, which is
not true in general, as some links might not exist. However, this should be a
reasonable approximation, since it only misses the smallest products of
hidden degrees. Now, the above transformation cannot be performed
without the precise distances in the embedding, as it depends on dmn.
Recalling that dmn = RΔθmn, where Δθmn stands for the angular separation
between the nodes, and the fact that all such distances are approximately
equal to the angular separation between the supernodes to which the nodes
belong to (Δθmn ≈Δθ

0
ij), all dependency on the distance can be removed by

fixing α0 ¼ α:

ω0
ij ¼ ν0ða0Þ2d0�α

ij

Xr2
e¼1

wmn

νa2d�α
mn

� � β
Dðη�1Þþα

e

" #Dðη�1Þþα
β

¼ ν0

ν

a0

a

� �2 RΔθ0ij
R0Δθ0ij

 !α Xr2
e¼1

wmn

� � β
Dðη�1Þþα

e

" #Dðη�1Þþα
β

¼ ν0

ν

a0

a

� �2

rα=D
Xr2
e¼1

wmn

� � β
Dðη�1Þþα

e

" #Dðη�1Þþα
β

;

ð10Þ

where we have used that R0 ¼ R=r1=D.
Finally, we can choose any appropriate relation between primed and

unprimed global parameters leading to:

ω0
ij ¼ C

Xr2
e¼1

wmn

� �ϕ
e

" #1=ϕ
; ð11Þ

with ϕ � β
Dðη�1Þþα and C ¼ ν0

ν
a0
a

� �2
rα=D. Therefore, the weighted model

predicts that the exponent η characterizing the relation between strength
and degree is preserved in the renormalized network if weights are trans-
formed following Eq. (11) (in the noiseless case) and the value of ϕ that
corresponds to the considered network is used.

Theoretical derivation of the flow of the average strength
We start from Eq. (3) (D = 1) and impose that the rescaling variable:

C ¼ ν0

ν

a0

a

� �2

rα
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is constant in the flow such that the transformation of weights keeps the
same units in all scales of observation. The transformation of the relation
between hidden strength and hidden degree is:

a0

a
¼ hσi0

hσi
hκηi
hκηi0 :

We can also obtain the transformation of the free parameter ν using its
expression from ref. 20 and the expression for the parameter μ:

ν ¼ Γð1=2Þ
2π1=2μ1�αI2I3hσi

μ ¼ Γð1=2Þ
2π1=2I1hki

;

which leads to:

ν0

ν
¼ hσi

hσi0
hki0
hki

� �1�α

and therefore to:

C ¼ hσi0
hσi

hκηi
hκηi0
� �2

rξð1�αÞþα;

wherewehaveused the expression for theflowof the averagedegree.Weuse
hκηi ¼ γ�1

γ�1�η κ
η
0 (η < γ− 1) to compute its flow, and we obtain:

hκηi0
hκηi ¼ rξη:

Finally,

C ¼ hσi0
hσi r

ξð1�2η�αÞþα ¼ hσi0
hσi r

�ψ ;

and we impose C = 1 to obtain Eq. (4), from which ψ > 0 implies an
increasing average strength in the flow while it decreases if ψ < 0.

The transformation sum-GRW does not preserve the relation
between strength and degree
The sum-GRW transformation is:

w0
ij ¼

Xr2
e¼1

ϵmnwmn

¼ νd�α
mn

Xr2
e¼1

ϵmnσmσnðκmκnÞα=D�1;

ð12Þ

where e runs over all pairs of nodes (m, n) withm in supernode i and n in
supernode j anddmn = RΔθmn, whereΔθmn stands for the angular separation
between the nodes. All such distances are approximately equal to the
angular separation between the supernodes to which the nodes belong
(Δθmn ≈Δθ0ij), and one can takeα

0 ¼ α. Comparing Eq. (1) and (12), we can
write:

ν0d
0�α0
ij ¼ νd�α

ij ; ð13Þ

ϵ0ijσ
0
iσ

0
jðκ0iκ0jÞα

0=D�1 ¼
Xr2
e¼1

ϵmnσmσnðκmκnÞα=D�1; ð14Þ

and using R0 ¼ R=r1=D and Eq. (13) altogether, we have:

ν0 ¼ νr�α=D: ð15Þ

Therefore, in thenoiseless version (ϵmn = 1 ∀ (m, n)),we canobtain the
hidden strength σ 0i in the supernodes layer as:

σ 0i ¼
Pr

m¼1 σmκ
α=D�1
m

κ0α=D�1
i

≉ κ0ηi ; ð16Þ

which proves that, in general, the relation between hidden strength and
hidden degree is not preserved under sum-GRW.

Scale down replicas

(1) We obtain a renormalized network layer by applying the sup-GRW
method with a given value of r and number of iterations to match the
target network size.

(2) Typically, the average degree of the renormalized network layer is
higher than the original one. Thus, to obtain a scaled down network
replica of the topology, we decrease the average degree in the renor-
malized layer to that in the original network as explained in ref. 1, such
that hkðlÞnewi ¼ hkð0Þi. Themain idea is to reduce the value ofμ(l) to a new
one μðlÞnew, whichmeans that the connection probability of every pair of
nodes (i, j), pðlÞij decreases to pðlÞij;new. Therefore, the probability for a link
to exist in the pruned network reads:

pðlÞij;new ¼ 1

1þ dij
μðlÞnewκiκj

� �β
:

ð17Þ

In particular, we prune the links using μðlÞnew ¼ h hkð0Þi
hkðlÞi μ

ðlÞ with h = 1 as
initial value. After an iteration for all the links in the layer, we give h a
new value h(1− 0.1u)→ h if hkðlÞnewi > hkð0Þi, where u∈ [0, 1) is a
random variable from a uniform distribution. If hkðlÞnewi < hkð0Þi,
h(1+ 0.1u)→ h. The procedure stops when jhkðlÞnewi � hkð0Þij is below
a given threshold, that we set to 0.1.

(3) Finally, we rescale the weights in the resulting network by a global
factor tomatch the average weight of the original network. Specifically,
we calculate the average weight hwðlÞ

newi of the resulting network from
step (2) and the average weight 〈w(0)〉 in the original network. Then we
rescale the weight of each link by the factor c ¼ hwð0Þi

hwðlÞ
newi

.

Data availability
All the data are available in the manuscript and the Supplementary Mate-
rials or in the corresponding reference, or they will be provided on request.

Code availability
The computer code utilized in this study is available on Github at https://
github.com/zhmh163/Geometric-renormalization-of-weighted-network.
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