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Universitat Politècnica de Catalunya,

Campus Nord B4, 08034 Barcelona, Spain

(Dated: July 23, 2013)

1



node always 
infected

target node 
to infect

21 3 d+1d

FIG. SI-1: Scheme of the infectious events mediated by chains of nodes.

I. NUMERICAL SIMULATIONS

The SIS dynamics is simulated with a continuous time dynamics as follows: During the course

of the simulation, we keep track of the number of infected nodes NI(t) and the number of active

links EA(t), where an active link is defined as a link emanating from an infected node (notice that

links connecting two infected nodes will appear twice in this list). At each step, with probability

pr = NI(t)/[NI(t) + λEA(t)], a randomly chosen infected node is turned susceptible whereas,

with probability 1 − pr, an active link is chosen at random and if one of the two nodes attached

to the link is susceptible, then this node is turned infected. After this procedure, time is updated

as t → t + 1/[NI(t) + λEA(t)] and the list of infected nodes and active links recomputed. An

equivalent algorithm keeps a list of active links as those connecting one infected node and one

susceptible. The advantage of this latter method is that infectious attempts always end up with

a susceptible node being infected, which is not the case with the first method. In this work, all

simulations are backed up independently with the two methods.

II. ESTIMATION OF THE INFECTIVE RATE λ̄(dij , λ)

This rate is the inverse of the average time infected node i takes to infect node j when they

are separated by a distance dij in the original graph. We consider the process of transmission of

the infection between the two nodes mediated by a one dimensional chain of length dij . Consider

a one dimensional chain of d + 2 nodes with the leftmost node always infected, as indicated in

Fig. SI-1. Let T (d + 1) the average time the node at the rightmost position takes to get infected

for the first time. Let T̃ (d) the average time between two consecutive infectious events (after the

first one) of the node at distance d. Because we are in a chain and the source of the infection is

the leftmost node, the node at distance d + 1 can only get infected for the first time by its left

neighbor. Once this node is infected, the probability that the target node gets the infection before
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its left neighbor recovers is simply given by

p =
λ

1 + λ
(SI-1)

the node at distance d + 1 can get infected right after its left node gets infected for the first time

or after the second time, and so on. The probability that the node gets infected right after its left

neighbor gets infected for the n−th time is

Prob(n) = p(1− p)n−1 (SI-2)

On the other hand, the average time elapsed in this case Tn(d+ 1) is

Tn(d+ 1) = Tn(d) + (n− 1)(1 + T̃ (d)) + λ−1. (SI-3)

Combining these two results, we get the equation for the average infection time, T (d) =∑
n Prob(n)Tn(d),

T (d+ 1) = T (d) +
2

λ
+

1

λ
T̃ (d) (SI-4)

with the initial conditions T (1) = T̃ (1) = λ−1. In the limit of low infectious rate, that is, λ � 1,

we can approximate T̃ (d) ≈ T (d) and we get a closed recursive equation for T (d), whose solution

is

T (d) =
1

λ

[
(1 + 2λ)

(
1 +

1

λ

)d−1

− 2λ

]
≈ 1

λ
e(d−1) ln (1+ 1

λ) (SI-5)

We then conclude that the infective rate is

λ̄(dij, λ) ≈ λe−b(λ)(dij−1), with b(λ) = ln

(
1 +

1

λ

)
(SI-6)

In the case of small-world random graphs, the average internode topological distance depends

only on the degree of the nodes as [2]

dk,k′ = 1 +
ln
(
N〈k〉
kk′

)
lnκ

. (SI-7)

Inserting this expression into the effective infective rate we get

λk,k′ = λ

[
kk′

〈k〉N

] b(λ)
lnκ

. (SI-8)

We test numerically this relationship by keeping a single node of degree k always infected and

computing the time it takes to infect for the first time any other node in the network. The rate λk,k′

is obtained by inverting the value of this time for the first infectious event, averaged over all nodes

of degree k′. Equation (SI-8) predicts that plotting [λk,k′/λ]lnκ/b(λ) vs k′ a linear behavior must be

found, and this turns out to agree with the outcome of simulations in a network with γ = 3.5 (see

Fig. SI-2).
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FIG. SI-2: Plot of
[
λk,k′/λ

]lnκ/b(λ)·N〈k〉/k vs k′ for various values of λ and k. The prediction of Eq. (SI-8)

is the straight solid line.

III. ESTIMATION OF THE RECOVERY RATE δ(k, λ)

This rate can be estimated as the inverse of the survival time of an infection starting at the

center of a star of degree k. Unfortunately, the exact solution to this problem is rather involved

(see [3] for an exact treatment). Here, we present an approximation based on the discretization

of the process in time units of µ−1 = 1. Consider the following cycle: initially, the center of the

star –the hub– is infected whereas leaf nodes are susceptible. The probability that a leaf node is

infected when the hub recovers is

pin =
λ

2 + λ
. (SI-9)

Then, by the time the hub recovers, there are n infected leaf nodes with probability

Prob(n|k) =

 k

n

 pnin(1− pin)k−n (SI-10)

the probability that at least one of these n infected nodes infects the hub again before they recover

is
k∑

n=1

Prob(n|k)[1− (1− pin)n] = 1− (1− p2
in)k. (SI-11)
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The average time to complete the cycle is 2. The probability that the outbreak goes through a

sequence of m complete cycles and then dies is

(1− pin)k
[
1− (1− p2

in)k
]m

;m = 0, 1, · · · (SI-12)

and the time elapsed (2m+ 1). However, an outbreak can also die in the middle of the cycle, that

is, when infected leaves recover before infecting the hub again. The probability that the outbreak

goes through a sequence of m complete cycles and dies in the middle of the m+ 1 cycle is[
(1− p2

in)k − (1− pin)k
] [

1− (1− p2
in)k
]m

;m = 0, 1, · · · (SI-13)

The average elapsed time is in this case (2m + 2). Putting these pieces together, the effective

recovery rate can be approximated as

δ−1(k, λ) =
2

(1− p2
in)k
− 1

(1 + pin)k
. (SI-14)

For low infectious rates pin � 1, this can be approximated as

δ−1(k, λ) ≈ 2e−λ
2k/4. (SI-15)

As we have mentioned at the beginning of this section, the previous calculations provide only

an approximation to the true recovery rate. This is so because we have considered the process

as discretized in time whereas the real process takes place at continuous time. Nevertheless, we

expect that Eq. (SI-15) captures the correct functional dependence. To check this result, we have

performed simulations of the SIS model on star graphs, starting from a state with only the hub

infected and computed the average time needed to reach the absorbing healthy state. Fig. SI-3

shows the average lifetime for fixed values of λ as a function of the degree k, where the exponential

trend predicted by our calculations is clearly visible.

IV. DERIVATION OF EQ. (4)

Let us consider Eq. (3) in the main paper, namely

dρk(t)

dt
= −δ̄(k, λ)ρk(t) + λN

[
k

N〈k〉

] b(λ)
lnκ ∑

k′

k′
b(λ)
lnκ P (k′)ρk′(t)[1− ρk(t)]. (SI-16)

It is obvious that the absorbing state ρk(t) = 0 is a fixed point of the dynamics. Therefore,

we conclude that an endemic state exists whenever the solution ρk = 0 is dynamically unstable.
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FIG. SI-3: Average lifetime of star graphs with the hub originally infected as a function of the star degree

and different values of λ.

Following this idea, we linearize Eq. (SI-16) around ρk = 0, i.e.,

dρk(t)

dt
≈ −δ̄(k, λ)ρk(t) + λN

[
k

N〈k〉

] b(λ)
lnκ ∑

k′

k′
b(λ)
lnκ P (k′)ρk′(t). (SI-17)

This equation can be written in matrix form as

dρk(t)

dt
≈
∑
k′

Mkk′ρk′(t), (SI-18)

where

Mkk′ = −δ̄(k, λ)δkk′ + λN

[
k

N〈k〉

] b(λ)
lnκ

k′
b(λ)
lnκ P (k′). (SI-19)

The stability of the absorbing state is then controlled by the maximum eigenvalue of matrix M,

that is, the maximum Λm solution of the eigenvalue problem M~u = Λ~u. In this way, Λm = 0

defines the threshold between the absorbing and endemic phases. The eigenvalue problem can be

rewritten as
λN

Λ + δ̄(k, λ)

[
k

N〈k〉

] b(λ)
lnκ ∑

k′

k′
b(λ)
lnκ P (k′)uk′ = uk, (SI-20)

which gives us the explicit dependence of uk on k. Using this result, the eigenvalues satisfy the

equation ∑
k

P (k)
λN

Λ + δ̄(k, λ)

[
k2

N〈k〉

] b(λ)
lnκ

= 1. (SI-21)

By setting Λ = 0 and recalling that τ(k, λ) = δ̄(k, λ)−1, we recover Eq. (4) in the main paper.
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V. NON SMALL-WORLD NETWORKS

Let us assume that the average distance is given by

d = 1 + αNβ. (SI-22)

Plugging this expression in Eq. (1) in the main paper, we obtain a coarse description of the dy-

namics as
dρk(t)

dt
= −δ̄(k, λ)ρk(t) + λNe−αN

β b(λ)
lnκ

∑
k′

P (k′)ρk′(t)[1− ρk(t)]. (SI-23)

By repeating the same analysis performed in the previous section, we conclude that the critical

infection rate satisfies the equation

1 = λNe−αN
β b(λ)

lnκ

∑
k

P (k)τ(k, λ). (SI-24)

Assuming again that P (k) decays slower than an exponential, this equation can be approximated

as

1 =
λ

a(λ)
ea(λ)kmax−αNβ b(λ)

lnκ
−ln[ 1

NP (kmax) ]. (SI-25)

From this equation it is easy to see that for any fixed value of λ, if kmax grows faster than Nβ ,

there exists a size N such that the exponent in this equation starts growing with the system size

and, therefore, the right hand side in this equation will eventually grow above 1. The logical

consequence is that, in this case, the epidemic threshold goes to zero as N goes to infinity.

VI. ROBUSTNESS WITH RESPECT TO THE COVERAGE THRESHOLD C

To determine whether a given realization of the SIS process is endemic, we have used the

condition that the coverage is larger than a fixed threshold value C = 0.5. To check that different

assumptions do not qualitatively change the results, we performed some numerical tests. In Fig. SI-

4, we consider the effect of changing C for an Erdös-Rényi graph of average degree 〈k〉 = 5 and

different sizes N . The numerical estimate of the threshold rapidly converges to the expected value

λc = 1/5 for both values of C considered, while the height of the peak grows with an exponent

independent of C. In Fig. SI-5, we perform the same analysis for a UCM graph with γ = 3.5 and

kmin = 3, obtaining similar results. As the system size N is increased, the estimated thresholds

decrease and the peak heights increase in a perfectly analogous way. Both figures confirm that the

behavior of the model is robust with respect to the arbitrary choice of the coverage threshold C.
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VII. FURTHER CHARACTERIZATION OF THE EPIDEMIC TRANSITION

In this section we provide some additional insight into the transition marked by the peak of the

average lifetime of finite realizations T̄ (λ,N). In Fig. SI-6, we compare the curves already plotted

in the top left of Fig. 1 of the main paper with the analogous curves computed for a star graph with

kmax leaves. It is clear that the occurrence of the peak in the full network is not due only to the

star graph centered around its hub. The latter sustains alone the activity only for small λ. The

transition occurs at higher values of λ, for which the lifetime is exceedingly larger.

In Fig. SI-6 we plot, as a function ofN , the value of the average coverage of the whole network

at the critical value λmax(N) and at the critical value λ∗max(N) for the star graph centered around

the hub of degree kmax. It turns clearly out that at the critical point λmax the coverage assumes

a finite value in the thermodynamical limit, while it vanishes for λ = λ∗max. For λ = λ∗max the

hub and its neighbors are fully covered, yet the epidemics does not escape from the hub and its

neighbors and it is thus localized. At the transition point λmax instead the epidemics leaves the
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FIG. SI-4: Main: average lifetime T̄ (λ,N) for finite realizations as a function of λ for the SIS model on an

Erdös-Rényi graph of average degree 〈k〉 = 5. Left inset: position of the peak marking the estimate of the

numerical threshold as a function of the system size N . Right inset: height of the peak as a function of N .
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FIG. SI-5: Main: value of the epidemic threshold λmax estimated numerically as the position of the peak

of T̄ (λ,N) as a function of N for a UCM network with γ = 3.5 and kmin = 3. Inset: height of the peak of

T̄ (λ,N) for the same system.

hub and affects the whole population, leading to a truly endemic state.
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FIG. SI-6: Left: Plot of the average lifetime of finite realizations T̄ (λ,N) for UCM networks with γ = 3.5

and kmin = 3 and increasing values (bottom to top) of the system size N (solid lines). Dashed lines are the

same quantity computed for a star graph made of kmax+ 1 nodes, where the values of kmax are equal to the

largest degree in the UCM networks. Right: Plot of the average coverage for a UCM network with γ = 3.5

and kmin = 3 for two different values of λ, corresponding to the thresholds for the whole network (λmax)

and for the star graph centered around the largest hub (λ∗max).
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