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S1. SELF-SIMILARITY OF THE CONNECTION PROBABILITY

In this section we show that the connection probability

pij =

(
1 +

(R∆θij)
β

(µ̂κiκj)max (1,β)

)−1

(S1)

is self-similar under renormalization if certain choices are made. In the renormalization procedure described above,
supernodes in layer l + 1 are formed by combining r adjacent nodes from layer l. If any constituent of supernode σ,
denoted by the set S(σ) is connected to any of the constituents of supernode τ they are said to be connected. The
probability of this being the case is given by

p(l+1)
στ = 1−

∏
(i,j)∈P(σ,τ)

(1− p(l)
ij ), (S2)

i.e. one minus the probability that none of the constituents are connected. Here we have defined P(σ, τ) = S(σ)×S(τ).

Using that p
(l)
ij = 1/(1− x(l)

ij ) we can rewrite this expression as

p(l+1)
στ = 1− 1∏

(i,j)∈P(σ,τ)(1 + (x
(l)
ij )−1)

. (S3)

The denominator of the second term can be expanded as

∏
(i,j)∈P(σ,τ)

(1 + (x
(l)
ij )−1) = 1 +

∑
(i,j)∈P(σ,τ)

(x
(l)
ij )−1 +

∑
(i,j)∈P(σ,τ)

(x
(l)
ij )−1

∑
(s,t)∈P(σ,τ)\(n,m)

(x
(l)
st )−1 + ... (S4)
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We know that x
(l)
ij = (R(l)∆θ

(l)
ij )β

(l)

/(µ̂(l)κ
(l)
i κ

(l)
j )max(1,β(l)) which is proportional to (N (l))max(1,β(l)) � 1. Thus, we

can truncate the expansion at first order. We assume that ∆θ
(l)
ij ≈ ∆θ

(l+1)
στ , the distance between the two supernodes.

This is because the distances between the nodes within a single supernode is generally much smaller than the distance
between nodes in different supernodes. This allows us to rewrite Eq. (S3) as

p(l+1)
στ =

1 +

(
R(l)∆θ

(l+1)
στ

)β(l)

∑
(i,j)∈P(σ,τ)

(
µ̂(l)κ

(l)
i κ

(l)
j

)max(1,β(l))


−1

. (S5)

In order for this to be a proper connection probability in the renormalized layer, taking into account that R(l+1) =
R(l)/r and β(l+1) = β(l) ≡ β, we must demand µ̂(l+1) = µ̂(l)/rmin(1,β). Furthermore, the evolution of the hidden
degrees is as follows

κ(l+1)
σ =

 ∑
i∈S(σ)

(
κ

(l)
i

)max(1,β)

1/max(1,β)

. (S6)

This transformation respects the semi-group property of the renormalization as

κ(l+2)
σ =

 ∑
i∈S(σ)

(κ
(l+1)
i )max(1,β)

1/max(1,β)

=

 ∑
i∈S(σ)

∑
s∈S(i)

(κ(l)
s )max(1,β)

1/max(1,β)

. (S7)

This final double sum is equivalent to a single sum over all r2 nodes in the unrenormalized layer l that make up the
supernode in the layer l + 2.

In the similarity dimension we have slightly more freedom, as we just need to find a definition of ∆θ
(l+1)
σβ that (1)

respects the semi-group property of the renormalization procedure, (2) respects the spherical symmetry of the system
and (3) lies in the range defined by the angular coordinates of the constituent nodes and therefore respects the original
node order. We therefore define

θ(l+1)
σ =

∑
i∈S(σ)(κ

(l)
i )max(1,β)θ

(l)
i∑

i∈S(σ)(κ
(l)
i )max(1,β)

, (S8)

which can been seen as a weighted average. Note that we do not choose the exact definition as given in Ref. [1]
because it introduces a bias for the constituent node with the largest angular coordinate when β > 1.

The definition in Eq. (S8) works well as long as the difference between the largest and smallest coordinate is smaller
than π, but breaks down when this is not the case. If, for example, we try and create a supernode from the coordinates

(κ
(l)
1 , θ

(l)
1 ) = (1, π/4) and (κ

(l)
2 , θ

(l)
2 ) = (1, 7π/4), we end up with (κ(l+1), θ(l+1)) = (21/max(1,β), π). This obviously is

not correct, as the supernode lies on the opposite side of the unit circle from where its constituents were located. As
we normally define supernodes by taking adjacent constituent nodes, starting from the node with the smallest angular
coordinate, we do not run into this problem. However, in the main text we compare the ordered renormalization with
one where the constituent nodes are chosen at random, and thus Eq. (S8) can in principle not be applied. Note that
in this case also the argument used to obtain Eq. (S5) fails, and so we cannot expect the connection probability in the
renormalized layer to be congruent with the S1 model when the angular coordinate is relevant. The generalization of
the renormalized angular coordinate is given by

θ(l+1)
σ = arg

∑i∈S(σ)(κ
(l)
i )max(1,β)eiθ

(l)
i∑

i∈S(σ)(κ
(l)
i )max(1,β)

 , (S9)

which can be seen as a weighted circular mean.
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When the spread of the constituent angular coordinates is small, as is the case for GR, it does not matter which

of the two definitions of θ
(l+1)
σ one takes: Let {θ(l)

1 , ..., θ
(l)
r } be the set of constituent nodes of a supernode σ in layer

l + 1, sorted in ascending order and where we assume that θ
(l)
r − θ(l)

1 � 1. Then we know that ∆θ
(l)
i1 � 1 ∀i, which

allows us to approximate Eq. (S9) as

θ(l+1)
σ ≈ arg

eiθ(l)1
∑
i∈S(σ) κ

max(1,β)
i

(
1 + i∆θ

(l)
i1

)
∑
i∈S(σ) κ

max(1,β)
i


= arg

(
eiθ

(l)
1

(
1 + i∆θ(l)

))
≈ arg

(
eiθ

(l)
1 ei∆θ(l)

)
= θ

(l)
1 + ∆θ(l), (S10)

where in the second step we have defined the weighted average of the angular differences

∆θ(l) =

∑
i∈S(σ) κ

max(1,β)
i

(
θ

(l)
i − θ

(l)
1

)
∑
i∈S(σ) κ

max(1,β)
i

, (S11)

which is assumed to be small. Eq. (S10) can be rewritten to obtain Eq. (S8). We generally choose Eq. (S8) as it
respects the semi-group property explicitly, while Eq. (S9) only does so approximately in the case of small angular
spread of the constituents as only then can one approximate

eiθ(l+1)
σ ≈

∑
i∈S(σ)(κ

(l)
i )max(1,β)eiθ

(l)
i∑

i∈S(σ)(κ
(l)
i )max(1,β)

, (S12)

which is necessary for the semi-group property to hold.

The expected degree of a node with hidden degree z = κ(l+1) can be expressed as

k(l+1)(z) =
N (l)

r

ˆ
dz′
ˆ π

0

dθρ(l+1)(z′)
1

1 + (R(l)θ)β

(µ̂(l)zz′)max(1,β)

=
N (l)

r

ˆ
dz′ρ(l+1)(z′)2F1

[
1, 1/β

1 + 1/β
;− (πR(l))β

(µ̂(l)zz′)max(1,β)

]
,

(S13)

where we know that for x → ∞ one has 2F1(1, 1/β, 1 + 1/β,−x) = ((1 − β)x)−1 + (π/β) csc(π/β)x−1/β + O(x−2).
Employing this approximation and using that 〈κ(l+1)〉 = rξ〈κ(l)〉, it can then be shown that

k(l+1)(κ(l+1)) = rξ−1 〈k(l)〉
〈κ(l)〉

κ(l+1). (S14)

We can then take the average over the hidden degree to get

〈k(l+1)〉 = rν〈k(l)〉, (S15)

where we define ν = 2ξ − 1.

S2. SELF-SIMILARITY OF THE DEGREE DISTRIBUTION

The goal of this section is to find the degree distribution at the r’th level of renormalization. We start by studying
the hidden degree distribution, assuming that in the original network the distribution is given by

ρ(κ) = Nκ−γ , κ0 ≤ κ ≤ κc, (S16)

where N is the normalization constant. To obtain the distribution after renormalization we use Eq. (S6). Note that we
change our method slightly from this point onward. Instead of looking at the l’th layer of the iterative normalization
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procedure where each supernode is constructed with r nodes, we now study only a single normalization step. Note
however that, due to the semi-group property, these two approaches are equivalent as l steps of size r can always be
replaced by a single step of size rl. We first find that the distribution ρ̃(κ̃), where κ̃ = κmax(1,β):

ρ̃(κ̃) = Ñ κ̃−η, κ̃0 ≤ κ̃ ≤ κ̃c, (S17)

where we have defined Ñ = N/max(1, β), κ̃0 = κ
max(1,β)
0 , κ̃c = κ

max(1,β)
c and η = 1 + (γ − 1)/max(1, β). The next

step is to find the distribution ρ̃r(z̃) where z̃ =
∑r
i=1 κ̃i. We first state the result and follow with the proof:

ρ̃r(z̃) =

r∑
n=1

∞∑
q=1

cn,q z̃
n(1−η)−q1[rκ̃0,κ̃c+(r−1)κ̃0](z̃), (S18)

where cn,l are constants. To obtain the distribution of the hidden degrees z in the renormalized layer, we use the fact

that z = z̃1/max(1,β), which leads to

ρr(z) = max(1, β)ρ̃r(z
max(1,β))zmax(1,β)−1. (S19)

Note that for z̃ � 1, the dominant scaling in Eq.(S18) is z̃−η (n = 1, q = 1). Plugging this into Eq.(S19) proves
that the distribution ρr(z) scales as z−γ , which in turn demonstrates the self-similarity of the scaling behavior of
the hidden degree distribution under renormalization. Note that the cut-off in the renormalized layer is given by
(κ̃c + (r − 1)κ̃0)1/max(1,β), which is approximately κc if κ̃c � (r − 1)κ̃0.

We now prove Eq. (S18) using induction. First, for r = 2, we know that the distribution ρ̃2(z̃), where z̃ = κ̃1 + κ̃2,
is given by the convolution

ρ̃2(z̃) =

ˆ ∞
−∞

dκ̃ρ̃(z̃ − κ̃)ρ̃(κ̃). (S20)

Taking into account the support of ρ̃(κ̃) we can conclude that κ̃0 ≤ z̃ − κ̃ ≤ κ̃c and κ̃0 ≤ κ̃ ≤ κ̃c. We then rewrite
Eq. S20 as

ρ̃2(z̃) =
Ñ 2

z̃2γ−1

[(
B

1− κ̃0z̃

[
1− η
1− η

]
−B κ̃0

z̃

[
1− η
1− η

])
1[2κ̃0,κ̃c+κ̃0](z̃) +

(
B κ̃c

z̃

[
1− η
1− η

]
−B1− κ̃cz̃

[
1− η
1− η

])
1[κ̃0+κ̃c,2κ̃c](z̃)

]
.

(S21)

Here, Ba

[
b
c

]
represents the incomplete beta function. We then note that this function can be expanded as

B1−x

[
a
b

]
=
π csc (bπ)

a

( ∞∑
n=0

a(n)

n!
(−x)n

)
×
(

Γ(1 + a)

Γ(a+ b)

∞∑
q=0

[
(b− 1)(q)(−a)(q)

q!Γ(1− b+ q)
xl
]

− axb

Γ(1− b)

∞∑
q=0

[
(−a− b)(q)

q!Γ(1 + b+ q)
(−x)q

])
(S22)

Bx

[
a
b

]
= xa

∞∑
n=0

(1− b)(n)

n!(a+ n)
xn (S23)

when x → 0, where the y(n) represent the falling factorials: y(n) = y(y − 1)(y − 2)...(y − n + 1). In the case that
z̃ ∈ [2κ̃0, κ̃c + κ̃0], z̃/κ̃0 � 1 in the tail of the distribution. Thus, we can apply the expansions given above and show
that the dominant scaling in this regime is ρ̃2(z̃) ∼ z̃−η and that the full behavior is given by Eq. (S18). Crossing
over to the regime z̃ ∈ [κ̃0 + κ̃c, 2κ̃c], we get that 1− κ̃c/z̃ � 1, as least close to the transition. Using once again the
series expansions of the beta functions we obtain that ρ̃2(z) ∼ (1 − κ̃c/z̃)1−η. This falls of hyperbolically and so we
can take the probability density to be zero here. Therefore, we prove Eq. (S18) for r = 2.

Now, assuming that Eq. (S18) is true for some general r, let us investigate the case for r+ 1. In this case, we start
with the convolution

ρ̃r+1(z̃) =

ˆ z̃−κ̃0

rκ̃0

dκ̃ρ1(z̃ − κ̃)ρr(κ̃)1[(r+1)κ̃0,κ̃c+rκ̃0](z̃)

+

ˆ κ̃c+(r−1)κ̃0

z̃−κ̃c
dκ̃ρ̃1(z̃ − κ̃)ρ̃r(κ̃)1[κ̃c+rκ̃0,2κ̃c+(r−1)κ̃0](z̃), (S24)
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where have taken into account the respective domains of the two functions ρ̃1 and ρ̃r. The fact that ρ̃r(z̃) can be
expanded into a sum of terms g̃r(z̃;α) ∼ z̃−α, where α ≥ η, implies that ρ̃r+1(z̃) can be expanded into a sum of

integrals Ĩ(z̃;α) evaluating to

Ĩ(z̃;α)= Ñ r z̃1−η−α
[(
B

1− κ̃0z̃

[
1− α
1− η

]
− B rκ̃0

z̃

[
1− α
1− η

])
1[(r+1)κ̃0,κ̃c+rκ̃0]

+

(
B κ̃c+(r−1)κ̃0

z̃

[
1− α
1− η

]
−B1− κ̃cz̃

[
1− α
1− η

])
1[κ̃c+rκ̃0,2κ̃c+(r−1)κ̃0]

]
. (S25)

Using the same arguments as before, we can show that ∀α the integral falls off hyperbolically in the second region.
When z̃ ∈ [(r + 1)κ̃0, κ̃c + rκ̃0], it can be shown that the expression can be rewritten in the form of Eq. (S18), where
the dominant scaling for large z̃ is once again ∼ z̃−η. With this we conclude the proof.

Note that this proof is contingent on some assumptions, most notably that rκ̃0 � κ̃c. Of course, for finite κ̃c, there
is always an r for which this assumption breaks down. This has to do with the central limit theorem: For a finite
cut-off κ̃c, the variance of the distribution ρ̃(κ̃) is also finite, and thus the distribution ρ̃r(z̃) necessarily approaches a
Gaussian as r →∞. In the case of the model we in general assume that κ̃c = κ̃0N

max(1,β)/(γ−1), which is very large
for the network sizes we typically work with, and so one can perform several renormalization steps before one ‘feels’
the effect of the cut-off.

It is known that the degree distribution is related to the distribution of hidden degrees by

Pr(k) =
1

k!

ˆ
dzρ(z)k(z)ke−k(z), (S26)

where k(κ) is the expected degree of a node with hidden degree κ. In the unrenormalized layer one can show that
k(κ) = κ when µ̂ is chosen correctly. For this to be true for in the renormalized layer, however, one would need that
〈κr〉 = 〈kr〉, which is not generally the case as the scaling exponents determining the flow of these two quantities, ξ
and ν, are not always equal. Using Eq. (S14) and ξ = (ν + 1)/2, one obtains that

kr(κr) = r(ν−1)/2κr (S27)

We now note that we do not know the exact functional form of ρr(κ), at least not for β > 1. To be able to plug in
Eq. (S18), we first need to transform (S26). It can be shown that this integral is equivalent to

Pr(k) =
1

k!

ˆ κ̃c+(r−1)κ̃0

rκ̃0

dz̃
rk(ν−1)/2ρ̃r(z̃)z̃

k
max(1,β)

exp
(
r(ν−1)/2z̃

1
max(1,β)

) . (S28)

Then, combining the previous result with Eq. (S18) and Eq. (S26) one obtains

Pr(k) =

r∑
n=1

∞∑
q=1

cn,qr
k ν−1

2

k!

ˆ κ̃c+(r−1)κ̃0

rκ̃0

dz̃
z̃n(1−η)−q+k/max(1,β)

exp
(
r
ν−1
2 z̃1/max(1,β)

)

=

r∑
n=1

∞∑
q=1

cn,l max(1, β)r
ν−1
2 (max(1,β)(1−q)+n(1−γ))

k!

[
Γ
(

max(1, β)(1− q) + n(1− γ) + k, r
ν−1
2 +1/max(1,β)κ0

)

+ Γ
(

max(1, β)(1− q) + n(1− γ) + k, r
ν−1
2 (κ̃c + (r − 1)κ̃0)

1/max(1,β)
)]

. (S29)

When k � (κ̃c + (r − 1)κ̃0)
1/max(1,β)

, the two gamma functions cancel, meaning that the probability density vanishes.

When r1/max(1,β)κ0 � k ≤ (κ̃c + (r − 1)κ̃0)
1/max(1,β)

, the first term scales as k−γ , whereas the second term falls off
exponentially. This implies that the scaling behavior of the tail of the distribution is preserved under renormalization.
Note that once again for large κc the cut-off does not evolve under renormalization.
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S3. REAL NETWORKS

In this section we show the results of the RG procedure applied to a set of Real Networks living in the weakly
geometric region β < 1. We present here short descriptions of these networks as given in Ref. [2]. The properties of
these networks are shown in Tab. S1.

• Foodweb–Eocene [3]: A reconstructed food web of an ecosystem from the early Eocene (48 million years ago).
Nodes represent taxa and edges represent consumer-resource relations. The original network was directed.

• WordAdjacency–English [4]: A network of word adjacency in English texts. Nodes represent words and two
words are connected if one directly follows the other in texts. The original network was directed.

• WordAdjacency–Japanese [4]: A network of word adjacency in Japanese texts. Nodes represent words and
two words are connected if one directly follows the other in texts. The original network was directed.

• MB–R.norvegicus [5]: A metabolic network of the rat (Ratus norvegicus), extracted from the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG). Nodes represent substances involved in enzymatic reactions and edges
represent reactant-product pairs.

• WikiTalk–Catalan [6]: A network where nodes represents Wikipedia editors for a certain language (in this
case Catalan), and where user i and j are connected if i leaves a message on the talk page of j. The original
network was directed.

• GI–S.cerevisiae [7]: A network based on the Molecular Interaction Search Tool (MIST) for baker’s yeast
(Saccharomyces cerevisiae). Here node represent genes and the edges indicate that the effects of mutations in
one gene can be modified by mutations of another gene.

• GMP–C.elegans [8]: A multiplex network representing different types of genetic interactions for the nematode
worm Caenorhabditis elegans. The layers represent physical, association, co-localization, direct, suppressive and
additive interactions. In this paper we create a monolayer network by treating the different interaction types
equally and removing repeated links. The original network was directed.

• Gnutella [9]: A snapshot of the Gnutella peer-to-peer file sharing network on August 4th 2002. Nodes are
hosts and edges are connections between them. The original network was directed.

• PPI–S.cerevisiae [7]: A network based on the Molecular Interaction Search Tool (MIST) for baker’s yeast
(Saccharomyces cerevisiae). Here node represent genes and the edges indicate that there are physical interactions
between their associated proteins.

• PPI–D.melanogaster [7]: A network based on the Molecular Interaction Search Tool (MIST) for the fruit fly
(Drosophila melanogaster). Here node represent genes and the edges indicate that there are physical interactions
between their associated proteins.

• Transport–London [10]: An multiplex network of the public transportation system in London. Nodes are
London train stations and the links can represent either the underground, overground and DLR connections.
There connections are treated equally as to create a mono-layer network.

• GMP–S.cerevisiae [8]: A multiplex network representing different types of genetic interactions for baker’s
yeast (Saccharomyces cerevisiae). The layers represent physical, association, co-localization, direct, suppressive
and additive interactions. In this paper we create a monolayer network by treating the different interaction
types equally and removing repeated links. The original network was directed.

• Internet-PoP [11]: The Kentucky Datalink network, an internet graph at the Point of Presence (PoP) level.
Nodes are physical network interface points and links physical connections between them.

• PPI–H.sapiens [7]: A network based on the Molecular Interaction Search Tool (MIST) for humans (Homo
sapiens). Here node represent genes and the edges indicate that there are physical interactions between their
associated proteins.

• WikiVote [12]: The network represents the voting process used to select Wikipedia administrators, which
are contributors with access to additional technical features. Nodes represents Wikipedia users and an edge is
created if user i votes on the selections of user j. The original network was directed.

• MathOverflow [13]: An interaction network of users (nodes) on the online Q&A site MathOverflow. An edge
from node i to node j indicates that i responded to an answer by j. The original network was directed.
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TABLE S1. Network properties of several real weakly geometric networks shown. The following abbreviations are used: (MB)
Metabolic, (GI) Genetic Interactions, (GMP) Genetic Multiplex, (PPI) Protein Protein Interactions, (PoP) Point of Presence.

Network Area N 〈k〉 kmax c β

Foodweb–Eocene Ecological 700 18.3 192 0.10 β ≈ 0

WordAdjacency–English Language 7377 12.0 2568 0.47 β ≈ 0

WordAdjacency–Japanese Language 2698 5.9 725 0.30 β ≈ 0

MB–R.norvegicus Cell 1590 5.9 498 0.19 β ≈ 0

WikiTalk–Catalan Social 79209 4.6 53234 0.83 β ≈ 0

GI–S.cerevisiae Cell 5933 149 2244 0.17 0.63

GMP–C.elegans Cell 3692 4.1 526 0.11 0.69

Gnutella Technological 10876 7.4 103 0.01 0.73

PPI–S.cerevisiae Cell 7271 45.0 3613 0.37 0.75

PPI–D.melanogaster Cell 11319 23.7 889 0.10 0.84

Transport–London Transportation 369 2.3 7 0.03 0.86

GMP–S.cerevisiae Cell 6567 68.1 3254 0.22 0.88

Internet-PoP Technological 754 2.4 7 0.03 0.90

PPI–H.sapiens Cell 27578 37.9 2883 0.15 0.91

WikiVote Social 7066 28.5 1065 0.21 0.91

MathOverflow Social 13599 10.5 949 0.32 0.99

FIG. S1. Summary of the results of GR for the Foodweb-Eocene network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 50% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.
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FIG. S2. Summary of the results of GR for the WordAdjacency-English network. (a-c) Representation of the embedding for
layers l = 1, 2 and 3 in the hyperbolic plane. The top 10% most geometric edges are shown. The topological properties are

also given: (d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree

class, where c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the

degrees.

FIG. S3. Summary of the results of GR for the WordAdjacency–Japanese network. (a-c) Representation of the embedding for
layers l = 1, 2 and 3 in the hyperbolic plane. The top 50% most geometric edges are shown. The topological properties are

also given: (d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree

class, where c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the

degrees.
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FIG. S4. Summary of the results of GR for the MB–R.norvegicus network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 50% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.

FIG. S5. Summary of the results of GR for the WikiTalk–Catalan network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 1% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.
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FIG. S6. Summary of the results of GR for the GI–S.cerevisiae network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 5% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.

FIG. S7. Summary of the results of GR for the GMP–C.elegans network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 50% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.
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FIG. S8. Summary of the results of GR for the Gnutella network. (a-c) Representation of the embedding for layers l = 1, 2
and 3 in the hyperbolic plane. The top 40% most geometric edges are shown. The topological properties are also given: (d)

the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.

FIG. S9. Summary of the results of GR for the PPI–S.cerevisiae network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 3% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.
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FIG. S10. Summary of the results of GR for the PPI–D.melanogaster network. (a-c) Representation of the embedding for
layers l = 1, 2 and 3 in the hyperbolic plane. The top 20% most geometric edges are shown. The topological properties are

also given: (d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree

class, where c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the

degrees.

FIG. S11. Summary of the results of GR for the Transport–London network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 100% most geometric edges are shown. The topological properties are also

given: (d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree

class, where c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the

degrees.
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FIG. S12. Summary of the results of GR for the GMP–S.cerevisiae network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 5% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.

FIG. S13. Summary of the results of GR for the Internet-PoP network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 100% most geometric edges are shown. The topological properties are also

given: (d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree

class, where c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the

degrees.
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FIG. S14. Summary of the results of GR for the PPI–H.sapiens network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 5% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.

FIG. S15. Summary of the results of GR for the WikiVote network. (a-c) Representation of the embedding for layers l = 1, 2
and 3 in the hyperbolic plane. The top 10% most geometric edges are shown. The topological properties are also given: (d)

the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.
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FIG. S16. Summary of the results of GR for the MathOverflow network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 5% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/〈k(l)〉, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.
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