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Abstract 

We calculate the mean-squared displacement, (r2(t)), for a CTRW taking into account effects 
of anisotropic turn angles. When the pausing-time density is a negative exponential one finds a 
simple expression for (r2(t)) which allows an exact determination of the transition time from 
ballistic to diffusive motion. In the non-Markovian case an exact expression is obtained for the 
Laplace transform of (r2(t)). The results are useful in the analysis of photon migration in a 
turbid medium. 

PACS: 05.60.÷w, 0.540.+j, 05.20.-y 

I. Introduction 

One phenomenological theory that accounts for a number of properties of mate- 
rial transport in a disordered medium is based on the continuous-time random walk 
(CTRW) [1,2]. Over the years many useful properties and appplications have been 
developed for the simplest formulation of these random walks when successive steps 
of the walk are uncorrelated. However, applications to the theory of photon trans- 
port in turbid media suggest that the standard CTRW model should be extended to 
incorporate anisotropic scattering and, in particular, to determine the times at which 
anisotropy becomes unimportant so that the much simpler diffusion model can be used. 
An analysis of CTRWs with persistence was first given in the context of a model for 
bacterial motion on a surface [3]. The general problem of the anisotropic CTRW has 
been discussed by Gandjbakhche et al. [4] for discrete time models and by Weiss et al. 
[5] for a continuous time model, [5]. Both of these treatments examined points related 
to models for the migration of photons in turbid media with applications to determi- 
ning optical properties of human tissue [6]. The isotropization problem is amenable to 
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analysis because one need only consider the behavior of the second moment of dis- 
placement, and determine the time at which the mean-squared displacement (r(t).r(t)) 
makes a transition from ballistic behavior (in which it is proportional to t 2) to diffusive 
behavior in which it is proportional to t. Ref. [5] was flawed in not properly accounting 
for correlations in passing from discrete to continuous time. In this note we correct 
this error as well as discuss the behavior of the second moment for a more general 
class of  CTRWs in which the pausing-time density is asymptotically proportional to a 
stable-law density. 

2. Analysis 

We discuss a model in which a random walker moves along straight lines until 
interrupted by scattering events at times h, tl + t2, tl + t2 + t3, etc. At each scattering 

event the walker changes the direction in which it is moving according to a specified 
probability density. Our analysis will be restricted to a situation in which the first 
direction in which the walker moves in d dimensions is uniformly distributed over 
the d-dimensional unit sphere. We will show from a calculation of the mean-squared 
displacement that the only function needed to characterize persistence is 9 - (cos 0) 
where 0 is the turn angle in a single step, and where the average is taken with respect 
to a probability density of tum angles, p(O). When the random walk is isotropic 
this average is equal to zero. Rotations around a single step will be assumed to be 
uniformly distributed, thus being equivalent to the standard Markov model of polymer 
configurations [7], except that we here consider the CTRW in d dimensions and that 
the step lengths are not necessarily equal as they are in most polymer models. The 
pausing-time density or probability density for the times between successive scattering 

events will be denoted by ~b(t) with ~k(s) = f o  e-St~(t) dt" The probability density 
for the time to the nth scattering event will be denoted by ~n(t). Motion along any 
straight line segment will be assumed made with a constant velocity, which we set equal 
to 1. An argument that is standard in random walk theory shows that L~e{~n(t)} = ~n(s) 
and 5e{Sv(t)} = [1 - ~(s)]/s. These results will be used in our later analysis. 

The assumptions made so far allow us simplify all calculations by considering only 
the behavior of the projection along a single axis which we shall take to be the x-axis. 
Because of the assumed initial isotropy we can assert that (x(t)) = 0 and (r2(t)} = 
d (x2(t)) which means that we can restrict our analysis to a calculation of (x2(t)). Let 
(x2(t[m, z)} be the mean-squared displacement in time t conditioned on the number of 
turns made being equal to m and on the duration of the interval between the time of 
the last scattering event before time t. The time of this scattering event will be denoted 
by z. The unconditional mean-squared displacement can then be expressed as 

t 

(1) 
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where, by convention, ~b0(t) = 6(t). The random variable x(tlm, z) can be written as 

the sum 
m--I 

x(tlm, ~) = ~ xi(ti) + Xm(t - ~) , (2) 
i=l 

where xi(ti) is the displacement along the x-axis between the ( i -  1)st and ith turn, 
and where Xm(t - z) is the final displacement between the mth turning point, z, and 
time t. When m = 1 the sum in Eq. (2) is set equal to 0. The last interval, t - z, is 
treated differently from the remaining ones since it is not terminated by a scattering 
event. Therefore, Xm(t- z) is distributed differently from the remaining xi(ti) except in 
the case of  the negative exponential pausing time density ~,(t) = T -1 exp(-t/T).  In 
the analysis to follow we refer to xi(ti) a s  Xi where the argument ti is implied. 

The conditional mean-squared displacement (x2(tlm, z)) will be calculated by squa- 
ring the sum in Eq.(2). Our exposition is couched in the language of the two-dimensional 

CTRW for simplicity of notation, but an elementary geometric argument leads to the 
same results in higher dimensions. The projection along the x-axis in step i is xi = 
ticos(qSl + fli) in which ~bl is the angle made by the first step with the x-axis, and 
fll = O, fli = 01 + 02 + .. .  + Oi-1 (i>~2) is the sum of the angles between successive 
straight-line segments of the random walk. By our assumption that the initial condition 
is isotropic the angle q51 is uniformly distributed in (-re, re) while the O's take on 
values according to the probability density p(O). In calculating individual components 
of (xZ(t[rn)), we will need to distinguish between correlations of the form (xixj) where 
i,j ¢ m and cases in which one or both of them do refer to the final step of the random 

walk. 
In writing the detailed expression for (xZ(t[m, z)) in terms of its components we 

will initially treat m and z as fixed, and, at the final step, average over these variables. 
Denote cos(~ba + fli) by el. The relation between individual steps of the random walk 
and (x2(t[m, z)) can be written in terms of these variables as 

m--I m--1 
(x2(tlm, z)) = Z ( t2(m' z)) (c2i ) + 2 ~ ~ (ti(m, z)tj(m, z)) (CiCj) 

i=l i=1 j<i 
m--1 (3) 

"]- "C 2 (C 2 )  -'~ 2z E ( t i ( m , z ) )  (CiCm) . 
i=1 

The time averages are to be made with respect to the appropriate modification of ~O(t) 
and the averages of the c's are to be taken with respect to p(O) and the uniform 
distribution of ~bl. Specific expressions for the angular averages are readily found to 
be 

m--I ~_ ( ] _ _ g m ~  

(C2) = 1, Zi=I Ej<i (CiCj) -- 2(1 9) m 1 - - -9 / /  ' (4) 

if(1 - Ore) 
(CiCm) -- 2(1 ~ ~ " 
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The calculation of  (x2(tlm, z))  requires not only finding averages over the set of an- 
gles but also averages over time as indicated in Eq. (3). Observe that the (ti(m, z)tj(m, z)) 
do not depend on i and j, and let C(m, z) be the correlation function (ti(m, z)tj(m, z)) 
when i # j.  The expression for the conditioned mean-squared displacement in terms of 
these variables is 

(l m) 
= m  ( t 2 ( m , z ) ) + C ( m , z )  9----~-- m -1---9 (x2(tlm, z))  -~ 1 _  9 

• 

+ 2 + ( t (m,z))  z# . (5) 

The conditional time averages that appear in this equation are calculated in terms of 
inverse transforms of the ~n(s) and their derivatives. Detailed derivations are given in 
the appendix. Define the transforms 

L(S )  = [I~(s)]n--2[I[#'(S)] 2, ~ln(S) = [l[#(s)]n--l(s)l[#"(S), (6) 

where the primes indicate derivatives with respect to s with inverse transforms hn(t) 
and fn( t ) ,  respectively. One then finds 

(t(m, z)) = (t - z)/m, (t2(m, z)) = hm(t - z)Akm(t - z ) ,  

C(m, z) = fm( t  -- r)/I]lm(t -- "C), (7) 

which are to be incorporated into Eq. (5). 
As mentioned, the most convenient approach to calculating properties of the uncon- 

ditional mean-squared displacement, (x2(t)) ,  is in terms of  Laplace transforms since 

the transforms ~n(s), /~n(s), and fn (S )  are proportional to the powers of ~(s) and its 
derivatives. On substituting Eq. (7) into Eq. (5) and the result into Eq. (3) one finds 
that the Laplace transform of the sum can be evaluated in closed form since it reduces 
to the evaluation of geometric sums. The final result for the transform L,e { (x2(t)) } is 

At 

< L P { ( x 2 ( t ) ) } = ~ + - -  1 - ~ ( s )  1-Off/(s) " (8) 

If the sums in the denominators in the bracketed terms are again expanded then the 
transform can be inverted to yield a formal expansion having the form 

t 

(x2(t))  = -2 -- -n (t -- z)ZOn(Z ) az  
n = l  0 

t (x3 

(x2(,))o + E °" f = - -  ( t -  z)z~bn(z)dz,  (9) 
n 

n = l  0 

where (x2(t)) 0 is the mean-squared displacement with 9 -- 0. The form of the last 
line of Eq. (9) confirms the obvious requirement that when 9 > 0, (x2(t))  should be 
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greater than (x2(t))0 . When ¢( t )  is the negative exponential ~k(t) = (1/T)exp(-t /T) 
so that ~(s) = (1 + sT) -1 the transform in Eq. (8) can be inverted, yielding 

2T 2 / t + e -O-o)¢r} , (10) ( x 2 ( t ) ) -  d(i-_~/)2 [ ( 1 - g ) ~  - 1 

where d is the number of dimensions. This also follows from the formal expansion 
in Eq. (9). Because of the preferential scattering the short time behavior of (x2(t)) is 
proportional to t 2 which is ballistic motion, and at later times there is a transition to 

diffusive motion. The cross-over time is of the order of T/(1 - g). The formula given 
in Eq. (10) reduces to the two-dimensional result found in [8] for a model in which 

the turn-angle density p(O) was chosen to be 

1 1 
p ( O ) = ~ + 2 e c o s O ,  Jell<4--- ~ (11) 

so that g = 2he. 
Since Eq. (8) is exact we can use it to derive the behavior of (x2(t)) at long times 

in terms of moments of ~k(t). If the first two moments of this density are finite-the 
mean T and the variance, a2-then the long-time form for (xa(t)) is found to be 

(x2(t)) z (1 + g ) V  2 + (1 - O)a 2 t . (12) 
d(1 - g) T 

When ~(t) has an asymptotic stable-law form the effects of persistence are secondary 
to those induced by the pausing-time density. For example, in one dimension if ~(t)  
has the asymptotic property ~(t) ~ t-(2+~)with 0 < ~ < 1 it follows that as s --* 0, 

[2], 

~(s) ~ 1 - s r  + (s~) ~+1 , (13) 

where T and # are constants with the dimensions of time. This, together with Eq. (8), 

implies that at long times 

~f13 ( ~ ) 2 - e  (14) 
(x2(t)) ~ F(3Z-~)T 

which is the same as found in [9] and clearly independent of g. Similarly, if ~(t) 
t -(1+~) at long times one obtains a result for (x2(t)) that is approximately equal to 

(1 - ~)t2/2 which is independent of g. 
We have also carried out similar calculations to derive an expression for the fourth 

moment, but because of its complicated form do not present it here. It differs from the 
result for the second moment in requiring (cos 20) in addition to the parameter g. 
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Appendix. Calculation of the correlation functions 

To find the form of correlation functions for the scattering times we first calculate 
the joint probability densities for two arbitrary interscattering intervals ti and tj ( j  > i) 
under the conditions specified in the text. The indicated function will be denoted by 
p(ti, tj, z; m). Knowing this function allows us to calculate the conditional densities 
p(ti, tj[z,m) from which we can find the correlation functions that appear in Eq. (3) 
above. 

For the purpose of calculating p(ti, tj, z; m) we will define two times T and T ~ where 
T is the time till the ith scattering event, i.e., T -- tl + t 2 + . .  "+ti-1 and T' is the time 
between the ith and the j th scattering event. It follows from these definitions that the 
duration of the interval between the time of the scattering event immediately preceding 
time t and time t itself satisfies the inequality 

t -  z < ~ t -  (T + T' + ti + tj) .  (A.1) 

Remembering that ¢n(t) is the probability density for the sum of n steps, and that 
the interscattering times are identically distributed, we can write an expression for 
p(ti, tj, z;m) in terms of these functions as 

p(ti, tj, z;m) -- d/(ti)~k(tj)d/m_2(t - z - ti - t j )~ ( z ) .  (A.2) 

Hence, as a consequence of the identity 

t--z t--z--fi 

f d t i  f dtjp(ti,  tj, z ; m ) = ~ b m ( t - z ) ~ ( z  ) (1.3) 
o o 

it follows that 

Cm-2(t - z - ti - tj) (A.4) 
p(ti, tjlz, m ) = I~(ti)l~(tj) ~brn(t -- z) 

The conditional density describing a single interscattering time is similarly found to be 

, i , [ tA  ~bn_ l ( t  - -  Z_-- t i )  
p(tilz, n) = v', ,J I~n(t - z) (1.4) 

The results in Eqs. (A.4) and (A.5) can be utilized to find the conditional correlation 
C(m,z)  appearing in Eq. (5). We find for this function 

t--~ t--z--ti 

C(m,z)  = f tidti f tjp(ti, t j[z,m)dtj  . (A.6) 
o o 
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If the formula in Eq. (A.4) is substituted into this equation and use is made of  the 
identity 

(X3 

f t~( t )e  -s' dt  = - ~ ' ( s ) ,  (A.7) 

o 

one finds that 
^ ^ l  

~ { f , ( t ) }  = ~b,_2(s)[ ~ (s)] 2 (A.8) 

as given in Eq. (6). A similar calculation based on Eq. (A.5) yields the second part 
of Eq. (6). Finally, since the ti, i < m, are identically distributed random variables we 
can immediately assert that 

t - z  
( t(m,z)) - (A.9) 

m 
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