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The internal organization of complex networks often has striking consequences on either their response to
external perturbations or on their dynamical properties. In addition to small-world and scale-free properties,
clustering is the most common topological characteristic observed in many real networked systems. In this
paper, we report an extensive numerical study on the effects of clustering on the structural properties of
complex networks. Strong clustering in heterogeneous networks induces the emergence of a core-periphery
organization that has a critical effect on the percolation properties of the networks. We observe a novel
double phase transition with an intermediate phase in which only the core of the network is percolated and a
final phase in which the periphery percolates regardless of the core. This result implies breaking of the same
symmetry at two different values of the control parameter, in stark contrast to the modern theory of
continuous phase transitions. Inspired by this core-periphery organization, we introduce a simple model that
allows us to analytically prove that such an anomalous phase transition is, in fact, possible.
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I. INTRODUCTION

The essence of complex systems lies in the interactions
among their constituents. In many cases, these interactions
are organized into complex topological architectures that
have a determinant role in the behavior and functionality of
this class of systems. In regular lattices, dimensionality
appears to be one of the most distinctive features; however,
randomness and heterogeneity in the interactions of com-
plex networked systems induce phenomena that are very
different from, or that are not even observed in, regular
lattices. Examples range from the absence of epidemic
thresholds that separate healthy and endemic phases [1-6]
to the anomalous behavior of Ising-like dynamics [7—10]
and percolation properties [11-16].

Percolation theory has played a prominent role in
understanding the anomalous behaviors observed in com-
plex networks, and in most cases, it is the common under-
lying principle behind these behaviors. Interestingly, the
interplay between a complex network topology and differ-
ent percolation mechanisms leads to phenomena that have
not previously been observed in statistical physics, includ-
ing a lack of percolation thresholds in scale-free networks
with a degree distribution of the form P(k) ~ k™7 fory < 3
[1-6], anomalous infinite-order percolation transitions in
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nonequilibrium growing random networks [17,18], or
cascading processes in interdependent networks [19-21].
However, these phenomena have already been observed on
random graphs with given degree distributions. Random
graphs of this type are locally treelike; that is, the number of
triangles, and thus the clustering coefficient, can be
neglected in the thermodynamic limit. However, the strong
presence of triangles is, along with the small-world effect
and heterogeneity of the degree distribution, a common and
distinctive topological property of many real complex
networked systems. While clustering is not a necessary
condition for the emergence of any of these phenomena, the
effects of clustering on the percolation properties of a
network are unknown.

Percolation in clustered networks has been widely
studied [22-28]. However, previous reports differ concern-
ing the position of the percolation threshold. Some studies
report that clustered networks have a larger percolation
threshold than do unclustered networks because of redun-
dant edges in triangles that cannot be used to connect to the
giant component (GC) [24-26,28]. Other studies report that
strongly clustered networks are more resilient because of
the existence of a core that is extremely difficult to break
[22,23,27]. In fact, as we shall demonstrate, both arguments
are correct.

In this paper, we show that strong clustering induces a
core-periphery organization in the network [29] that gives
rise to a new phenomenon, namely, a “double percolation”
transition, in which the core and periphery percolate at
different points. This behavior is in stark contrast to the
modern theory of continuous phase transitions, which
forbids the possibility of breaking the same symmetry at
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FIG. 1. Bond percolation simulations for networks of N =
5 x 10* nodes with a power-law degree distribution, y = 3.1, and
different levels of clustering. (a) Relative size of the largest
connected component g as a function of the bond occupation
probability p. (b) Degree-dependent clustering coefficient ¢ (k).
(c) Susceptibility y as a function of the bond occupation
probability p. (d) Percolation threshold (p,..) as a function of
the level of clustering.

two different values of the control parameter. Multiple
percolation transitions have recently been reported in
Refs. [30-33]. However, in each of these cases, anomalous
percolation arises as a consequence of either complex
percolation protocols [30-32] or the interdependence
between different networks [33], and it is never associated
with the same symmetry breaking. Instead, our results are
obtained with the simplest percolation mechanism, bond
percolation with bond occupation probability p, which
indicates that this double percolation transition is exclu-
sively induced by a particular organization of the network
topology.

II. RANDOM GRAPHS WITH A GIVEN
CLUSTERING SPECTRUM

We can generate scale-free random graphs with a given
clustering spectrum ¢ (k) and fixed degree-degree correla-
tions, as shown in Appendix A. A preliminary analysis
shows that the percolation properties depend on two
network features, the heterogeneity of its degree distribu-
tion and the shape of the clustering spectrum ¢(k) [23]. For
weakly heterogeneous networks (y > 3), we observe that
increasing clustering in the network while keeping the
degree-degree correlations fixed increases the percolation
threshold and decreases the size of the giant component
(see Appendix B). However, the most interesting case
corresponds to heterogeneous networks, typically with
y < 3.5. In this work, we focus on the case of y = 3.1
and a constant clustering spectrum [34]. This value of y
generates scale-free heterogeneous networks but with a
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FIG. 2. Bond percolation simulations for networks with a
power-law degree distribution with y = 3.1, target clustering
spectrum ¢(k) = 0.25, and different network sizes. (a) Relative
size of the largest connected component as a function of the bond
occupation probability p. (c) Susceptibility y as a function of the
bond occupation probability p. (b, d) Position p.,, and height
¥max Of the two peaks of y as functions of the network size N. The
straight lines are power-law fits, and (b) and (d) show the
measured values of the critical exponents.

finite second moment, which allows us to clearly isolate the
new phenomenon. The results for y <3 are qualitatively
similar but more involved and will be presented in a
forthcoming publication.

Figure 1 compares the percolation properties of networks
with identical degree sequences and degree-degree corre-
lations but with different levels of clustering. For each
network, we perform bond percolation 10* times using the
Newman-Ziff algorithm [36] and measure the average
relative size of the largest (giant) connected component,
g=(G)/N, and its fluctuations, i.e., the susceptibility
x = [(G?*) = (G)?]/(G). These results are then averaged
over 100 network realizations. In finite systems, a peak in
the susceptibility y indicates the presence of a continuous
phase transition, and its position provides an estimate of the
percolation threshold (see Appendix E for details). Plots (c)
and (d) in Fig. 1 show new and surprising results. For low
levels of clustering, there is a unique and well-defined peak
in y, but increasing clustering gives rise to the emergence of
a secondary peak at higher values of p. This result suggests
the presence of a double phase transition, in which two
different parts of the network percolate at different times.

To confirm this possibility, we perform finite-size scaling
on networks with a target clustering spectrum of c(k) =
0.25 and different system sizes, ranging from N = 5 x 10°
to N =5 x 10°. Plot (d) in Fig. 2 shows that the suscep-
tibility exhibits two peaks whose maxima y,, diverge as
power 1aws, ¥ nax (N) ~ N”'/v [37]. The position of the first
peak also approaches zero as a power law p.(N) ~ N1/,
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FIG. 3. (a—c) clustering m-core decomposition of three different networks with N =5 x 104, y = 3.1, and different levels of
clustering, ¢(k) = 0.001, 0.1, 0.25. The color code of a node represents its m coreness. For instance, nodes colored violet belong to the
m0-core but not to the m1-core and are said to have m coreness of zero. The blue colored nodes belong to the m 1-core but not to the m2-
core and have m coreness of 1, etc. The visual representation is as follows. The outermost circle and its contents represent the m0-core
and therefore the entire network. If we recursively remove all edges of multiplicity 0, we obtain the m1-core subgraph, which is
contained within the m0-core. Nodes with no remaining connections do not belong to the m1-core, have m coreness of 0, and are located
at the perimeter of the outermost circle. If the m1-core is fragmented into different disconnected components, these components are
represented as nonoverlapping circles within the outermost one and with nodes of m coreness of 1 located in their perimeters [see, for
instance, panels (b) and (c)]. The same process is repeated for each disconnected m 1-core, which will contain a subset of the m2-core,
and so on. Links between nodes are not depicted for clarity. (d) The size of the giant m-core as a function of m for the networks

shown in panels (a—c).

as shown in Fig. 2(b), which suggests that even if the
network has bounded fluctuations, (k*) < oo, it is always
percolated in the thermodynamic limit. In contrast, the
position of the second peak is nearly constant in the range
of sizes we have considered. The divergence of the two
peaks in the susceptibility strongly suggests that we are
indeed observing two different continuous phase transi-
tions. The first transition is between nonpercolated
and percolated phases, and the second transition is
between two percolated phases with very different internal
organizations.

A. The clustering m-core decomposition

To understand the effect of clustering on the global
structure of networks, we use the clustering m-core
decomposition developed in Ref. [39]. This process is
based on the concept of edge multiplicity m, which is
defined as the number of triangles passing through an edge.
We further define the m-core as the maximal subgraph
whose edges all have at least multiplicity m within it. By
increasing m from 0 to m,,,, we define a set of nested
subgraphs that we call the m-core decomposition of the
network. This decomposition can be represented as a
branching process that encodes the fragmentation of
m-cores into disconnected components as m is increased.
The treelike structure of this process provides information
regarding the global organization of clustering in networks.
To visualize this process, we use the LaNet-vi 3.0 tool
developed in Ref. [39] (see the caption of Fig. 3). Figure 3
shows the m-core decomposition of three networks with
N =5 x10* nodes, the same degree sequence (with
y =3.1) and degree-degree correlations, and different
levels of clustering. For low levels of clustering, the

ml-core is very small, and thus, the m-core structure is
almost nonexistent. As clustering increases, m-cores begin
to develop new layers and m,,,, increases. For instance, for
¢(k) = 0.25 [Fig. 3(c)], after the recursive removal of all
links that do not participate in triangles, we obtain the
m1-core that is composed of a large connected cluster with
a well-developed internal structure (a core in the center of
the figure) and a large number of small disconnected
components (a periphery). This result indicates that even
if the network is connected, by iteratively removing all
edges with multiplicities of zero, we are left with a small
but well-connected subgraph, and the reminder of the
network is fragmented. Drastic topological transitions
induced by clustering have also been reported in the
Strauss model and its generalizations [40—42].

The aforementioned result suggests that the two peaks in
the susceptibility could be related to this core-periphery
organization. Both parts would percolate at different times,
first the core and then the periphery, and hence have their
own percolation thresholds. To test this hypothesis, we
perform bond percolation on the network with a bond
occupation probability of p between the two peaks. The
giant component at this value of p defines a subgraph that
we identify with the core and that roughly corresponds to
the core observed in Fig. 3(c) (see Appendix C). We then
extract the latter core subgraph from the original network,
and the remaining network is thus identified with the
periphery. Once the core and periphery are isolated, we
perform bond percolation on both components independ-
ently and compare the results with the original network.
Figure 4 shows that the core percolates precisely at the
point where the first peak appears in the original network,
whereas the periphery percolates at the second peak.
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FIG. 4. Bond percolation simulations of the core and periphery
of a network with N =5 x 10, y = 3.1, and target clustering
spectrum ¢(k) = 0.25. The bond occupation probability to
separate the core is p = 0.2. The susceptibility curve of the
periphery (dashed blue line) has been divided by 5 for ease of
comparison.

ITII. THE CORE-PERIPHERY RANDOM GRAPH:
A SIMPLE MODEL SHOWING A DOUBLE
PERCOLATION TRANSITION

The modern theory of continuous phase transitions states
that, in a connected system, it is not possible to break the
same symmetry at two different values of the control
parameter. In our context, this statement implies that it
is not possible to have two genuine percolation transitions
at two different values of p. It is then unclear whether the
second peak observed in our simulations corresponds to a
real percolation transition or to a smeared transition, with
the percolated core acting as an effective external field that
provides connectivity among nodes in the periphery.

Unfortunately, strongly clustered networks cannot be
studied analytically. However, we can devise a system with
a core-periphery organization similar to that induced by
strong clustering. Let us consider two interconnected
Erd6s-Rényi random graphs, a core and a periphery, of
average degrees of k, and l_cp, respectively. The relative size
isr = N./N,, and the average numbers of connections of a
node in the core to nodes in the periphery (and vice versa)
are k, » and I_cpc = rl_ccl,, respectively. To model a core-
periphery organization, we chose r < 1 and k. > k, > k.
The relative size of the giant component of the combined
network is

r 1

9(p) II—HQC(P)JF]—HQp(P)v (1)

where g.(p) and g,(p) are the solution of the system of
transcendent equations
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The derivation of these equations can be found in
Appendix D. From here, it readily follows that g. and

g, must be either both different from zero or equal to zero,
implying that there is generally only one percolation
transition, whereas at p ~ k3!, there is a crossover effect
due to growth of the periphery.

This result is true if the coupling between the core and
periphery is macroscopic, that is, if the number of con-
nections between the two structures is proportional to the
size of the system such that k, » and k pe are constants in the
thermodynamic limit. Instead, suppose that the number of
connections among nodes in the core and periphery scales
sublinearly with the system size, i.e., as N* with0 < a < 1.
In this case, l_cc,, and l_cpc are zero in the thermodynamic
limit: Thus, g. and g, become decoupled in Eq. (2) such
that g, can be different from zero while g, = 0. However,
when both the core and periphery have a giant connected
component as isolated networks, the combined network
forms a single connected component because there is an
infinite number of connections between each part.

The effect of such structure on bond percolation is as
follows. When the bond occupation probability is increased
from p = 0, the first phase transition occurs at p = k!,
where the core percolates in a giant component G, ~ O(N).
In the range k7! < p < k;,', the periphery is composed of a
large number of small disconnected components. The
number of such components directly connected to G,
and thus the number of nodes in the periphery connected
through G, scales as N%; therefore, its fraction vanishes in
the limit N > 1, and the relative size of the giant compo-
nent of the combined system is just G./N. Once we reach
p= l_c;l, a percolating cluster is formed in the periphery
that becomes macroscopic as we increase p by an infini-
tesimal amount, i.e., G, ~ O(N). At this moment, and not
before, the number of connections between G, and Gp
becomes N*2G.G, ~ O(N*) and, consequently, G. and
G, are connected with probability 1. Thus, we have a
double percolation transition defined by a regular transition
at p =k;' and the sudden emergence at p = k' of a
macroscopic subgraph in the periphery with two types of
connectivity; namely, each pair of nodes in this subgraph
can be connected not only by a path going through the core
but also by a path composed exclusively of nodes outside
the core. In turn, this translates into a double discontinuity
of the first (or higher) derivative of the order parameter g at
p=k;" and p = k;', as clearly seen in Fig. 5(b).

Figures 5(a) and 5(b) present the simulation results of the
relative size of the giant component for ¢ = 1 and a = 0.5,
respectively. In the first case, we observe a crossover effect
at approximately p = l_cl‘,l, as also observed in Ref. [43],
whereas in the second case, we observe a clear disconti-
nuity in the derivative of g(p) at exactly p = k', which is
consistent with the analytical prediction in Eqgs. (1) and (2)
for k. p = k pec = 0. However, the strongest evidence for the
presence of a genuine double phase transition is provided
by analysis of the susceptibility. In the case of a crossover
effect, fluctuations in the percolated phase behave as
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FIG. 5. Bond percolation simulations for the core-periphery
random graph model with @ = 1 (left column) and a = 0.5 (right
column). In both cases, the core has an average degree of k, = 10
and the periphery 7(,, = 2.5. The core-periphery ratio is r = 0.2.
The black dashed line in plot (b) is the numerical solution of
Egs. (1) and (2) with k. » = 0. The inset shows the approach to the
theoretical prediction at the second transition point as the size of
the system is increased.

(G*) — (G)? ~ (G); consequently, the quantity y should
diverge at the critical point and become size independent
after this point has been surpassed. In contrast, if the second
transition in the periphery is a real phase transition, this
quantity should diverge at both p = k7' and p = ;. This
behavior is clearly observed in Figs. 5(c) and 5(d) (we
provide a finite-size analysis of both transitions in
Appendix E, Figs. 9 and 10).

In the case of clustered networks, it is difficult to clearly
identify the core. Nevertheless, by using the giant m1-core
as a rough approximation, we find that, in the case of
¢(k) = 0.25, the average number of connections between a
node not in the giant ml-core and nodes in the giant
m1-core is approximately 0.02, indicating that the core and
periphery are, in fact, very weakly coupled. In any case, the
double divergence of y shown in Fig. 2(c), just as in the
core-periphery random graph model with a < 1, is clear
evidence for a genuine double phase transition.

IV. DISCUSSION

As we have demonstrated, clustering has a nontrivial
effect on the properties of complex networks. This effect
depends on three main factors: the heterogeneity of the
degree distribution, the degree-degree correlations, and the
shape of the clustering spectrum ¢(k). If we avoid degree-
degree correlations, the combination of strong clustering
and heterogeneity induces the emergence of a small but
macroscopic core surrounded by a large periphery. This
organization redefines the percolation phase space of
complex networks by inducing a new percolated phase

in which the core of the network is percolated but the
periphery is not. In this situation, increasing clustering
makes the core larger and more entangled, thereby decreas-
ing the percolation threshold of the first transition, as
suggested in Refs. [22,23,27]. However, in the remaining
part of the network (the periphery) clustering generates
small clique-like structures that are sparsely interconnected
[see Fig. 3(c)]. Thus, the periphery becomes more fragile,
and the percolation threshold of the second phase transition
increases, in agreement with Refs. [24-26,28]. For weakly
heterogeneous networks, the size of the core is not macro-
scopic; thus, clustering only makes these networks more
susceptible to the removal of links. This fact reconciles
the two dominant interpretations of the effect of clustering
on the percolation properties of complex networks.
Interestingly, this behavior is also observed in a large
sample of real complex networks (see Appendix F), which
provides evidence of the generality of this phenomenon.

We have shown that, in contrast to previous theory, it is
possible to have two or more consecutive continuous phase
transitions associated with the same symmetry breaking.
Our work opens new lines of research concerning the effect
of this core-periphery architecture on dynamical processes
that occur in networks. In the case of epidemic spreading,
for instance, the core could act as a reservoir of infectious
agents that would be latently active in the core while the
remainder of the network is uninfected.
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APPENDIX A: MAXIMALLY RANDOM
CLUSTERED NETWORKS

Maximally random clustered networks are generated by
means of a biased rewiring procedure similar to the
approach used in Refs. [42,44]. One edge is chosen at
random that connects nodes A with B. Then, we choose, at
random, a second link attached at least to one node (C) with
the same degree of A. This link connects C with D. Then,
the two edges are swapped so that nodes A and D, on the
one hand, and C and B, on the other, are now connected.
We make sure that no self-connections or multiple con-
nection between the same pair of nodes are created in this
process. Notice that this procedure preserves both the
degree of each node and the actual nodes’ degrees at the
end of the two original edges. Therefore, the procedure
preserves the full degree-degree correlation structure
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encoded in the joint distribution P(k, k"). The procedure is
ergodic and satisfies detailed balance.

Regardless of the rewiring scheme used, the process is
biased so that generated graphs belong to an exponential
ensemble of graphs G = {G}, where each graph has a
sampling probability P(G) « e™#H(9), with p the inverse of
the temperature and H(G) a Hamiltonian that depends on
the current network configuration. Here, we consider
ensembles where the Hamiltonian depends on the target
clustering spectrum ¢ (k) as

(A1)

where ¢*(k) is the current degree-dependent clustering
coefficient. We then use a simulated annealing algorithm
based on a standard Metropolis-Hastings procedure. Let G’
be the new graph obtained after one rewiring event, as
defined above. The candidate network G’ is accepted with
probability
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FIG. 6. Top panels: Bond percolation simulations for networks
of 10000 nodes with a power-law degree distribution with y =
3.5 and different levels of clustering. (a) Relative size of the
largest connected component g as a function of the bond
occupation probability p. (b) Degree-dependent clustering co-
efficient ¢(k). (c) Susceptibility y as a function of bond
occupation probability p. (d) Percolation threshold (p,.¢) as a
function of the level of clustering. Bottom panels: (e-g) m-core
decomposition of three different networks of 50000 nodes,
y = 3.5, and different levels of clustering, ¢(k) = 0.01, 0.10,
0.25. (h) Size of the largest connected component of the m-core
as a function of m.

otherwise, we keep the graph G unchanged. We first start
by rewiring the network 200F times at f = 0, where E is
the total number of edges of the network. Then, we start an
annealing procedure at f, = 50, increasing the parameter /3
by 10% after 200E rewiring events have taken place. We
keep increasing f until the target clustering spectrum is
reached within a predefined precision or no further
improvement can be achieved.

APPENDIX B: EFFECT OF CLUSTERING ON
WEAKLY HETEROGENEOUS NETWORKS

Figure 6 for y = 3.5 and Fig. 7 for y =4 show the
comparison of the percolation properties of networks with
exactly the same degree sequence and degree-degree
correlations but different levels of clustering. For each
network, we perform bond percolation 10* times using the
Newman-Ziff algorithm [36] and measure the average
relative size of the largest (giant) connected component,
g=(G)/N, and its fluctuations, i.e., the susceptibility
1 = [(G*) — (G)?]/(G). These results are then averaged
over 50 network realizations. In finite systems, a peak in the
susceptibility y indicates the presence of a continuous
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FIG. 7. Top panels: Bond percolation simulations for networks
of 10000 with a power-law degree distribution with y =4 and
different levels of clustering. (a) Relative size of the largest
connected component g as a function of the bond occupation
probability p. (b) Degree-dependent clustering coefficient ¢ (k).
(c) Susceptibility y as a function of bond occupation probability
p. (d) Percolation threshold (p,,.,) as a function of the level of
clustering. Bottom panels: (e—g) m-core decomposition of three
different networks of 50000 nodes, y = 4, and different levels of
clustering, ¢(k) = 0.01, 0.05, 0.25. (h) Size of the largest

connected component of the m-core as a function of m.
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FIG. 8. A network of 50000 nodes, with a power-law degree
distribution with y = 3.1 and a clustering spectrum ¢(k) = 0.25.
The nodes are distributed according to the m-core decomposition.
Red nodes (1811) are the core because they belong to the giant
component after we perform a bond percolation with p = 0.2
(between the two percolation thresholds). Blue and green nodes
are peripheral nodes that belong to the giant component at p =
0.5 (just after the second percolation threshold). Once we subtract
the core, blue nodes (10408) still remain in the GC; meanwhile,
green nodes (4271) belong to small components. Black nodes
(33510) never belong to the GC.

phase transition, and its position gives an estimate of the
percolation threshold. All networks have a unique and
well-defined peak in y, and an increase of the clustering
moves the peak to higher values of p. Hence, clustering
decreases the giant component and increases the percola-
tion threshold.

APPENDIX C: IDENTIFICATION OF THE CORE

In order to identify which nodes belong to the core and
which belong to the periphery, we perform a bond
percolation simulation on a network of 50000 nodes
|

y =3.1 and c(k) = 0.25. We first delete all edges, and
then we add the edges one by one randomly. After we add
20% of the total number of edges (p = 0.2 that lays
between the two percolation thresholds), the GC defines
a subgraph that we identify with the core (red nodes in
Fig. 8). If, in the same simulation, we keep adding edges,
we will observe another phase transition where the periph-
ery percolates at p = 0.5. However, the periphery perco-
lates regardless of the core. This can be observed if we
subtract the nodes that belong to the core and see that the
largest component that remains is still a macroscopic
component (blue nodes in Fig. 8), and only a few nodes
leave the GC (green nodes in Fig. 8).

APPENDIX D: BOND PERCOLATION ON
INTERCONNECTED NETWORKS

Let us consider two interconnected random graphs a and
b with average degrees k,, and kj,, respectively. The
relative size is r = N,/N,, and the average number of
connections of a node in a to nodes in b (and vice versa) are
k,, and kj, = rk,,. Each node has connections to both
networks, and therefore, its degree can be represented as a
vector k = (k,, k). Hence, P,(k) is the probablhty of a
node of the network a to have degree k, and P, (k |k) is the
probability that a node of a with degree k is connected to a
node of b with degree K. The relative size of the giant
component of the combined network is

9a(p) + (), (D1)

’
9P =15 I+ r
where g, is the probability that a node of a belongs to the
giant component, or 1 minus the probability that it belongs
to a finite cluster, that is, g, =1—>.2,0,(s), where
0,(s) is the probability that a randomly chosen node from
network a belongs to a cluster of size s.

In heterogeneous networks, the size of the cluster a
given node belongs to is correlated with the degree of the
node. Thus, Q,(s) must be evaluated as Q,(s) =
> iPa(k)Q,(s|k), where Q,(s |k) is the probability that a
node from network a of degree k belongs to a cluster of
size s. The latter function satisfies

Qu(slk) = > <l;a> aP”“(l —p)ley (lif)bpnb(l — p)kem

Ny

Z Gaa Sl|k

“Sng

55’1+Sl+"'+S"a+s/1+'"+5;b P

ua n |k E Gab
‘1" "b

ny

Gab( nh |k)

(D2)

where Gau(s@) (Gu,,(s|7<)) is the probability to reach s other nodes by following a neighbor in network a (b). The

generating function of Q,(s|k) can be written as
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0, (z[k)

Functions G, (s|%), G
satisfy

Gaa(2lk) = 23 Pu(K1K)(1 = p + pGoa (2k)) (1 = p + pGp(2lk))
%

Gap(2lk) = 2> _Puy(K|K)(1 = p + pG(21K)) ™ (1 = p + pGyy (2]K)) s
%

Gra(2lk) = 2> _Ppa(K 1K) (1 = p + pGa(2lK))Ke(1 = p + pGp(2]K))H!
%

G (2k) = 2) Py (K 1K) (1 = p + pGa(2lk)* (1 = p + pGy(2lk)) 57",
k

where P, (%/@) is the probability that a randomly chosen
neighbor among all the a neighbors of a node that belongs
to network a with degree k has degree K, and analogously
for the rest of the transition probabilities.

For networks with no degree-degree correlations, these
transition probabilities simplify as

kP, (K w = kP (K
Py =57 p gy = B
aa bb
S kP (K e kP (K
PpEl = P, @y = K)oy
ba ab

This implies that functions G, (z|k) a,,(z|k) G,,a(z|k)
and G, (z|k) become independent of k. We further assume
that the number of neighbors from @ and b of a given node
are uncorrelated, that is,

Py (k)

P, (k) = Py (ky)Py(ky) = Py (k,) Py (k).

(D9)

In the case of two coupled Erdos-Rényi random graphs, the
degree distributions P, (k,), P,(ky), Py(k,), and P, (k;)
are all Poisson distributions of parameters &, K, kpq, and
kyp,, tespectively. In this case, it is easy to check that

04(2) = Guul2), 0p(z) = Gpy(2), and
G oa(z) = ze~FaaP(1=Gaa() g=karp(1=Cu(2)) (D10)
Gy (2) = zekraP(1=Gra(2)) g=Rnnp (1=G1(2)) (D11)
Gpa(2) = zekarP(1=Gan(2)) =Raap (1-Cua(2)) (D12)
G (2) = zeFnp (=G0 (@) g Faar(-Gua@) | (D13)

37045102 = 2(1 = p + pGu(2lK) (1 = p + pGp(2lK))%.
s=0

(D3)

b (s|z), G, (s\z), and be(s|z) follow similar recurrence equations. Thus, their generating functions

(D4)

(D5)

(D6)

(D7)

[

Finally, using g, = 1 — Qa(z =1)=1-=Gulz=1) and
gy =1-— Qh(Z =1)=1-G,(z=1) and after defining
Gab = 1_Gah(z_ 1) and Iba = I_Gha(z_ 1) we
obtain Eq. (2).

APPENDIX E: FINITE-SIZE SCALING OF THE
CORE-PERIPHERY RANDOM GRAPH MODEL

In percolation theory, the susceptibility is usually evalu-
ated by the average size of finite clusters [38]. An alternative
approach is to use the fluctuations of the order parameter,
with a proper normalization [45,46]. The advantage of this
approach is that these fluctuations involve the extreme
values of the cluster size distribution, which are responsible
for the critical fluctuations of the process. In this work, we
follow this approach but with a different normalization. In
the standard version, the susceptibility is defined as

PO vk G/ >;]<G> : (E1)
whereas ours is defined as
_(G*) = (G)?
=G (E2)

The advantage of using Eq. (E2) instead of Eq. (El) is
mainly numerical. For a finite system of size N, the peak of
the standard susceptibility near the critical point behaves as
M ~ N7/V and the average size of the giant component as
(G) ~ N'=P/¥ (in this context, y is not the exponent of the
degree distribution but the critical exponent of the suscep-
tibility). Therefore, our version of the susceptibility y
diverges near the critical point as y ~ N”/¥, where
y' =y + f. This means that y > y, and thus, it is easier
to measure in numerical simulations.
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FIG. 9. Bond percolation simulations for the core-periphery
random graph model for a = 1 for different sizes. In both cases,
the core has an average degree k. = 10 and the periphery
l_cp = 2.5. The core-periphery ratio is r = 0.2. (a) Relative size
of the largest connected component as a function of the bond
occupation probability p. (c) Susceptibility y as a function of
bond occupation probability p. (b, d) Position p.,, and height
¥max Of the two peaks of y as a function of network size N. The
straight lines are power-law fits. Panels (b) and (d) show the
measured values of the critical exponents.

Let (.. 7c.v.) and (B,.7),.v,) be the critical exponents
of the core and the periphery when they are isolated from
each other. Close to the percolation transition of the core,
the giant component is mainly composed of nodes in the
core, and therefore, we expect the first transition to have the
critical properties of regular percolation in the core sub-
graph; in particular, the susceptibility near the first peak
diverges with the exponent y./v.. Close to the second
transition point, the giant component is the sum of the giant
component in the core, G, plus the percolating cluster in
the periphery, G,. Since G. and G, are statistically
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FIG. 10. Bond percolation simulations for the core-periphery
random graph model for & = 0.5 for different sizes. In both cases,

the core has an average degree k. = 10 and the periphery
l_<p = 2.5. The core-periphery ratio is » = 0.2. (a) Relative size
of the largest connected component as a function of the bond
occupation probability p. (c¢) Susceptibility y as a function of
bond occupation probability p. (b, d) Position p.. and height
¥max Of the two peaks of y as a function of network size N. The
straight lines are power-law fits. Panels (b) and (d) show the

measured values of the critical exponents.

independent, the susceptibility in this region can be
evaluated as

(Gp)

<Gc> T <Gp>)(p - \Yp/
(G

<Gc> + <Gl7>

(E3)

Xet

However, if the second transition point is well separated
from the first one, close to this second transition y.~ cte,
(G.)~N,and (G,) ~ N'=%/%_Then, we expect that near
the second transition, the susceptibility behaves as
y ~NW=)/vo The critical exponents in the case of
Erdos-Renyi random graphs are the mean-field ones, that
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=
& Y
2 1A ; (O35
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Left panel: Bond percolation simulations for the US air transportation network. The relative size of the largest connected

component g and its susceptibility y as a function of the bond occupation probability p are shown. Right panel: m-core decomposition.
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is, f = y = 1 and v = 3 [38]. Therefore, in our simulations,
we expect the first peak to diverge as N?/3, the second peak
as N'/3, and the approach of the position of the peaks to
their respective critical points as py.y ~ p. + AN~'/3. This
is confirmed in Fig. 10.

APPENDIX F: REAL NETWORKS

1. US air transportation network

In the US air transportation network, the nodes are
airports and a link is the existence of a direct flight between
two airports [47]. The network has 583 nodes, 1087s edges,
an average degree of k = 3.73, a clustering coefficient of
C = 0.43, and a maximum degree k,,, = 109. Figure 11
shows bond percolation simulations and the m-core decom-
position of the US air transportation network.

2. Human disease network

In the “human disease network,” nodes represent dis-
orders, and two disorders are connected to each other if

they share at least one gene in which mutations are
associated with both disorders [48]. The resulting network
has 867 nodes, 1527 edges, an average degree of k = 3.52,
a clustering coefficient of C = 0.81, and a maximum
degree k,,x = 50. Figure 12 shows bond percolation
simulations and the m-core decomposition of the human
disease network.

3. Pokec online social network

Pokec is one of the most popular online social networks
in Slovakia. Pokec has been available for more than 10
years, and it connected more than 1.6 million people by
2012. We analyze the undirected network by deleting all
nonbidirectional links. For a smaller system, we only
consider nodes that signed up for the online network
before 2004. The resulting network has 44285 nodes,
75285 edges, an average degree of k = 3.4, a clustering
coefficient of C = 0.09, and a maximum degree k., = 58.
Figure 13 shows bond percolation simulations and the
m-core decomposition of the Pokec online social network.
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FIG. 12. Left panel: Bond percolation simulations for the human disease network. The relative size of the largest connected
component g and its susceptibility y as a function of the bond occupation probability p. Right panel: m-core decomposition.

10 T T T 80
Largest component size S — Susceptibility x
-7 470
0.8
> 160
g =
g 06 10 2
g {40
204 g
= 130 g @4
= A E
G 120 < o
0.2 )
110 @0
0.0 . : 0
0.0 0.6 0.8 1.0

p

FIG. 13. Left panel: Bond percolation simulations for the Pokec online social network. The relative size of the largest connected
component g and its susceptibility y as a function of the bond occupation probability p are shown. Right panel: m-core decomposition.
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