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Online social networks (OSNs) enable researchers to study the social universe at a previously
unattainable scale. The worldwide impact and the necessity to sustain the rapid growth of OSNs
emphasize the importance of unraveling the laws governing their evolution. Empirical results show that,
unlike many real-world growing networked systems, OSNs follow an intricate path that includes a
dynamical percolation transition. In light of these results, we present a quantitative two-parameter model
that reproduces the entire topological evolution of a quasi-isolated OSN with unprecedented precision from
the birth of the network. This allows us to precisely gauge the fundamental macroscopic and microscopic
mechanisms involved. Our findings suggest that the coupling between the real preexisting underlying
social structure, a viral spreading mechanism, and mass media influence govern the evolution of OSNs. The
empirical validation of our model, on a macroscopic scale, reveals that virality is 4–5 times stronger than
mass media influence and, on a microscopic scale, individuals have a higher subscription probability if
invited by weaker social contacts, in agreement with the “strength of weak ties” paradigm.
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I. INTRODUCTION

The rapid growth of online social networks (OSNs), like
Twitter or Facebook, is reshaping the social landscape and
changing the way humans interact on a worldwide scale.
Needless to say, social networks existed well before OSNs
were even invented. However, OSNs offer us the unprec-
edented opportunity to map social interactions at a scale that
was unattainable before the digital era. This has transformed
OSNs into huge sociological laboratories, boosting social
sciences up to the level of experimental sciences. There is,
however, an important difference between traditional social
networks and OSNs. Technology-mediated social inter-
actions constitute accelerating phenomena already observed
in conventional social networks. Nevertheless, in the case of
OSNs, these take place faster and on a worldwide scale. This
is already changing the way companies try to promote or sell
their products with viral marketing campaigns [1–4], the way
influential people, e.g., politicians, interact with their fol-
lowers on Twitter [5–7], or the way people self-organize and
cooperate in protestmovements [8,9], crowdfunding [10], etc.
Nonetheless, this sociotechnological revolution must

come along with the development of new technologies
able to sustain its growth. In this respect, one important
issue concerns the design of the basic architecture of

current OSNs. The best way to solve the scalability
limitations of OSNs is to replace their centralized architec-
ture by a fully decentralized one [11]. This can address
privacy considerations and improve service scalability,
performance, and fault tolerance in the presence of an
expanding base of users and applications. However, to
accomplish this program successfully, it is necessary to
take into account the social structure of the underlying
society and how it interacts with the system, a task that
involves network, computer, and social sciences.
As a matter of fact, we already have a fairly good

knowledge of the topological properties of the “social
graph” among users of OSNs [12–14]. Indeed, large data
sets of OSNs have allowed researchers to characterize their
topology and validate many principles from the social
sciences, such as the “six degrees of separation” [15–19]
by Milgram or the “strength of weak ties” by Granovetter
[20–25]. However, these results concern static snapshots of
the system and, thus, offer little insight into the funda-
mental mechanisms leading to the evolution of OSNs. Such
insights can only be obtained from a detailed analysis of the
temporal evolution of topologies of OSNs [26–32]. As we
show, in the case of real OSNs, such temporal evolution
follows an intricate path: an initial phase where the social
graph is made of small clusters with increasing diameter
and average degree, followed by a dynamical percolation
transition and, finally, an epoch of increasing average
degree and shrinking diameter, akin to the observations
by Leskovec, Kleinberg, and Faloutsos in Refs. [33,34].
Interestingly, this type of history cannot be explained by
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standard models of growing networks under preferential
attachmentlike mechanisms, thus calling for new funda-
mental principles.
In this paper, we focus on a particularly important case

study, the Slovakian OSN “Pokec” [35]. This network has a
combination of unique properties that make it the perfect
test bed for our purposes, namely, the following. (i) It is the
most popular friendship-oriented OSN in the country. (ii) Its
size represents 25% of the country’s population. However, a
simple demographic analysis of both the country and Pokec
users suggests that, with its current size, it is covering a large
fraction of the population susceptible to ever participating in
OSNs. (iii) The Slovak language ismostly spokenwithin the
country. (iv)We can reconstruct its temporal evolution since
its birth. As a result, we have the full history of a quasi-
isolated OSN whose final state is also a good proxy for its
underlying offline friendship network. We hypothesize that
the underlying social structure is essential for the emergence
of OSNs. Under this premise, we introduce a simple model
that incorporates viral dynamics and mass media influence
[36] operating on amultiplex network [37] formed by online
and offline social graphs. The model reproduces very well
the topological evolution of the Pokec OSN. Nevertheless,
the perfect match is only achieved by introducing into the
model the “importance of weak ties” paradigm, yet another
empirical evidence in support of Granovetter’s theory.

II. RESULTS

A. Evolution of the OSN Pokec: An example of a
dynamical percolation transition

Pokec is by far the largest and most popular friendship-
oriented OSN in Slovakia [35]. By April of 2012, it gathered
around 1.6 × 106 users and 30 × 106 directed friendship
relations. Nevertheless, not all directed links correspond to a
real social tie: Alice might consider Bob as her friend while
Bobmaynot have the same consideration forAlice. Thus,we
discard all nonbidirectional links from the original graph and
treat those left as undirected edges. The resulting filtered
network is composed of 1.2 × 106 users and 8.3 × 106

bidirectional friendship connections. Interestingly, available
users’ profile data contains the registration date of all users.
Using this information, we can replay the history of the
network topology by assuming that an edge between two
users exists at a certain time if both users exist at that time.
This approximation is reasonable due to observations from,
e.g.,Ref. [27],which suggests thatmost edges are created in a
short time period after the birth of its end nodes.
In the inset of Fig. 1, we show the temporal evolution of

the number of registered users. We clearly appreciate a
sustained monotonic increase, suggesting that the popular-
ity of Pokec has not diminished even after the onset of
Facebook in the year 2004. This monotonic relationship
allows us to use the number of current users NðtÞ as a
measure of time instead of the physical time t. While this is

only a rescaling of the temporal axis, it makes the
comparison with models easier. The main plot in Fig. 1
shows the evolution of the giant connected component
(GCC) as a function of the network size. We observe a
behavior that could be interpreted as a dynamical phase
transition between a phase that consists of small discon-
nected clusters and a percolated phase where a macroscopic
fraction of the network (99% at the end of the evolution) is
connected. In percolation theory, the signature of such a
continuous transition is encoded in the divergence, at the
critical point, of the susceptibility χ, defined as a measure
of the ensemble fluctuations of the size of the GCC.
Unfortunately, this technique cannot be applied in our
case, as the temporal evolution of the Pokec social graph is
just one realization of the process. An alternative of the
susceptibility is the size of the second largest connected
component. This measure is known to diverge at the critical
point, and, in a single realization of a finite system, it shows
a maximum close to the critical percolation point.
Figure 1 shows a clear peak in the size of the second

largest connected component, indicating that, indeed, we
are observing a dynamical phase transition [38]. In the
same figure, we also show the behavior of the average
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FIG. 1. Topological evolution of the empiric network. Top: The
inset shows the evolution of the network size from 1999 to 2012.
The main plot shows the relative size of the GCC (blue circles),
the size of the second largest component (red squares), and the
average shortest path length (green triangles, multiplied by 4 for
better readability). Bottom: The largest components of the net-
work are visualized at three different times, before the critical
point t1, at the critical point t2, and after it, t3.
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shortest path length (ASPL) within the largest connected
component, which shows a quite interesting behavior.
During the first stage of the evolution, the ASPL increases
with the network size, but its growth is not compatiblewith a
logarithmic law, as predicted by the small-world effect.
Shortly after the critical point, the ASPL reaches its
maximum and then decreases while the size and the
average degree [see Fig. 5(b)] of the network increase. At
long times, the ASPL reaches a value of about 5, which is
compatible with the small-world effect. This behavior was
first observed in Ref. [33].

B. Basic model: Balance between virality and mass
media influence

Growing network models based on preferential attach-
ment [40] or similar mechanisms [41–48] were designed to
describe systems whose functionality is essentially deter-
mined by their large-scale connectivity, for example, the
physical Internet, power grid networks, biological networks,
road networks, etc. Consequently, such models do not show
dynamical percolation transitions, as they generate a giant
connected component from the very beginning of the net-
work evolution, a constant average degree, and an increasing
average shortest path length as a function of the number of
nodes. In this type of model, the pool of new nodes that are
added to the system does not have any previous relationwith
existing nodes and the connections of newborn nodes to
existing nodes are decided exclusively as a function of the
current topological state of the network. However, in the
case of friendship-orientated networks, there is a preexisting
underlying offline social network conditioning the growth of
the OSN. Following this line of reasoning, we conjecture
that the observed evolution is the result of a dynamical
process that triggers potential users from the offline social
network to subscribe to the OSN. Under this assumption,
nearly all dynamics able to induce the recruitment of all
potential users will yield a dynamical percolation transition.
Yet, different dynamics induce different temporal orders in
the evolution of OSNs and, therefore, different topological
histories.
Following these ideas, we design a two-layer multiplex

model for the evolution of OSNs. The upper layer repre-
sents the online social network, whereas the bottom layer
represents the offline social network. The latter can be
considered the subgraph of all a priori susceptible indi-
viduals from the aggregation of all social interactions
between individuals. Each individual can be in three
different states depending on whether they are or are not
enrolled in the OSN. Susceptible individuals are those not
in the OSN but that might eventually become members of
it. Active individuals belong to the OSN and are actively
using it for their social interactions. Passive individuals also
belong to the OSN but are not currently using it to interact
with their social contacts; see Fig. 2. The populations of
susceptible, active, and passive individuals are governed by

a combination of an epidemiclike process between active
users and susceptible or inactive ones and a mass media
effect that equally affects the population of susceptible
individuals. There are four possible events. (1). Viral
activation. A susceptible node can be virally activated
and added to the OSN by contact with an active neighbor in
the traditional offline network. This event happens at rate λ
per each active link. (2). Mass media effect. Each suscep-
tible individual becomes active spontaneously at rate μ and
is added to the OSN layer as a response to the visibility of
the OSN. (3). Deactivation. Active users become sponta-
neously passive at rate δ and no longer trigger viral
activations nor reactivate other passive nodes. (4). Viral
reactivation.At rate λ an active user can reactivate a passive
neighbor. The neighbor then becomes active and can trigger
both viral activations and viral reactivations. We can
arbitrarily set δ ¼ 1, which defines the time scale in units
of the deactivation time. The model is then left with two
independent parameters, the virality parameter λ and the
mass media parameter μ. Finally, newborn users explore the
OSN and connect to all their neighbors in the traditional
offline social network that, at the time of the subscription,
are either active or passive. In the Supplemental Material
[39], we conduct an experiment to show that the impact of
delayed edge formation can be neglected for reasonable
time scales. It is worth pointing out that the dynamics
between active and passive users is equivalent to the
susceptible-infected-susceptible epidemic model [49]. As
happens in the susceptible-infected-susceptible model, our
model also has a critical rate λc below which the number of
active users vanishes whereas above it the activity of the
OSN is self-sustained. This makes the model extremely
versatile, as it can explain the different fates of OSNs.

1) Viral activation 2) Mass media effect

3) Deactivation 4) Viral reactivation

Online social
network layer

Underlying contact
network layer

S: Susceptible
only offline
can be activated

P: Passive
online and offline
do not activate

A: Active
online and offline
do activate

FIG. 2. Illustration of the two-layer model. The upper layer
represents the online social network and contains the active and
passive nodes. The bottom layer corresponds to the underlying
contact network, which contains all nodes. The four dynamical
processes are shown in topological illustrations below.
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We also note that a mean-field version of this dynamics has
been recently and independently proposed to model users’
activity of OSNs [50].
The viral activation and the mass media effect play

complementary roles in terms of their impact on the
topological growth of the network. The mass media effect
is very likely to create new components especially at the
beginning of the network evolution, whereas the viral
activation leads to the growth of already existing compo-
nents. The interplay between these complementary princi-
ples is the fingerprint of the evolution of the online social
network, and the balance between these mechanisms
governs the appearance of the phase transition. We quantify
and discuss this balance herein.
Unfortunately, the rigorous validation of the model

requires the precise knowledge of the topology of the
underlying social network. However, in the particular case
of the Pokec network, its large coverage among the
subgraph of potential users suggests that we can consider
the final snapshot of the Pokec OSN as a good proxy for the
real underlying social network. Following this approach,
we perform extensive numerical simulations of our model
and compare the resulting evolutionwith the onewe observe
in the Pokec OSN. Of course, the real evolution of the Pokec
network is still ongoing and, thus, we expect this approxi-
mation to fail as we approach the final size of the network. In
particular, we do not expect the model to reproduce the
network growth in physical time because, as the model
approaches the size of the empirical network, a saturation
process apparently slows down the dynamics. We deal with
this problem by using the network size instead of physical
time as the measure of the course of the evolution, which
allows us to compare the topology of the model and the
empiric network despite its ongoing evolution [51].
The results of our model show the emergence of a

dynamical phase transition from a disconnected to a
connected state. The position of the critical point is related
to the parameters λ and μ. For a fixed λ, increasing μ leads
to the creation of more new disconnected components
while the rate at which they are merged by the viral
mechanism is kept constant; hence, the phase transition
occurs at larger system sizes. Higher λ, however, increases
the system’s tendency to connect previously disconnected
components, which leads to an earlier transition. We take
advantage of the uniqueness of the critical point to adjust
the parameters of the model by matching the network size
of the model and the empiric network at the transition point.
To this end, we compute the critical size for different values
of the parameters λ and μ, as shown in Fig. 3. In the empiric
network, the phase transition occurs at NP

c ¼ 10600, which
is represented by the black contour line in the plot. The
green line shows a linear fit according to

μðλÞ ¼ ð0.25� 0.01Þλ: ð1Þ

The virality mass media line given by Eq. (1) quantifies the
balance between the importance of the viral effect and the
mass media effect for the evolution of the network. In light
of this result, we conclude that the viral effect is about 4
times stronger than the mass media effect. In other words,
in the particular case of the Pokec OSN, it is 4 times more
likely to subscribe to the network as a result of a friend’s
invitation than as the result of the information about the
network available through the mass media. However,
Eq. (1) holds only above a critical value of the virality
parameter λ > λc, which corresponds to the critical thresh-
old for the self-sustained activity of the network (see
Supplemental Material [39]). Below this limit, the virality
mass media line bends downwards and, in the limit of
λ ¼ 0, it is not possible to match the position of the critical
size (see Supplemental Material [39]). This implies that
both virality and mass media influence are necessary and
complementary mechanisms to explain the topological
evolution of OSNs.
In the active phase, the effect of changing the value of λ

is very mild if the relation Eq. (1) is preserved. In our case,
we choose the value of λ that best reproduces the evolution
of the number of disconnected components [Fig. 5(a)] and
obtain the corresponding μ from Eq. (1). We then compare
the results of the model with the empirical evolution of the
Pokec OSN in Fig. 4. Interestingly, our two-parameter
model is able to reproduce the entire evolution of the
network with an impressive precision for all measured
global topological properties, such as the size of the giant
component, the ASPL, and the size of the second largest
connected component; see Fig. 4. However, the model is

FIG. 3. The color density plot represents the network size at the
critical point for the respective parameters λ and μ. For constant λ,
an increase of μ leads to a later transition (red area), whereas for
constant μ, one observes an earlier transition (blue area) for
higher values of λ. The solid black line indicates the virality
mass media line corresponding to the critical size of Pokec
(NP

c ¼ 10600). The green line shows a linear fit in the region
above the sustained activity threshold λc ¼ 0.02 (see Supple-
mental Material [39]).
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not able to reproduce the temporal trends of local quan-
tities, such as the mean local clustering and assortativity
coefficients, as shown in Figs. 5(c) and 5(d). The clustering
coefficient of the Pokec OSN steadily increases since the
beginning of the evolution, whereas the model exhibits first
a sudden increase followed by a decreasing clustering
coefficient. The assortativity coefficient fluctuates both in
the model and in the empiric network, although its value in
the model is about 3 times higher. This disagreement
suggests that a local mechanism must be incorporated to
reproduce simultaneously the global and local evolution of
the network topology. In the next section, we present an
extended version of our model that takes into account the
overlap of each node’s neighborhood, with interesting
implications concerning the strength of weak ties paradigm.

C. Extended model: Strong versus weak ties

The viral activation mechanism of our model is com-
pletely blind to the network topology; that is, active users
try to “infect” all their neighbors with the same probability.
As a consequence, the model performs well at reproducing
the evolution of the global topological quantities, but it fails
at reproducing trends in local quantities, like the clustering
coefficient. However, according to Granovetter [20], the

diffusion of information through a social tie is different
depending on whether the tie is “strong” or “weak.”
Following Granovetter’s idea, we use the overlap of two
individuals’ friendship network as a measure of the strength
of their tie [20]. In particular, given an edge connecting
users i and j, we define its social strength as

sij ≡ ðmij þ 1Þ; ð2Þ

wheremij counts the number of triangles going through the
edge or, equivalently, the number of common neighbors of
the two users.
Our previous model can now be easily extended to

account for the strength of social ties. We assume that
viral activation and reactivation through the edge i ↔ j is
given by

λij ¼ λ
sηij
hsηi ; ð3Þ

where hi denotes the global average over the whole net-
work. In this way, the parameter λ has the same interpre-
tation as in the basic model. The transmissibility-strength
coefficient η represents the relationship between the viral
transmissibility and the strength of the social tie. When
η > 0, viral transmissibility is proportionally to the strength
of social ties, which puts special emphasis on the strong ties
for the viral spreading. Instead, when η < 0, the highest
viral transmissibilities are assigned to edges with low
multiplicities, which tend to act like connectors between
different clustered groups (see Fig. 6). In the case of η ¼ 0,
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FIG. 4. Comparison of model and Pokec network evolution.
Top: The symbols represent the empirical data, whereas the solid
lines correspond to the results from the model averaged over 100
realizations with λ ¼ 0.03 and μ ¼ 0.008. Points correspond to
the empiric network and lines represent the results from the
model. Bottom: Snapshots of the topology of the model at
different times, similar to Fig. 1.
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FIG. 5. Topological evolution of the empiric network (blue
circles), the basic model (red dashed lines), and the extended
model (green lines). (a) Evolution of the number of components
of size s > 1. (b) The evolution of the mean degree shows a
densification of the network. (c) The assortativity coefficient as
defined in Ref. [52]. (d) The evolution of the mean local
clustering coefficient (of nodes with k > 1) exhibits an essential
difference between the basic model (red dashed line) and the
extended model with η ¼ −0.65 (green line).
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we have λij ¼ λ, and we recover the basic model discussed
in the previous section.
We quantify the transmissibility-strength coefficient η by

comparing the evolution of the mean local clustering
coefficient in the Pokec OSN with results from the
extended model. Figure 5(d) shows that the clustering
coefficient of the Pokec OSN grows approximately linearly
with the logarithm of the network size. Thus, we interpolate
the evolution of the clustering coefficient of our model for
different values of η and compare the obtained slopes with
the empirical one, as shown in Fig. 7. The extended model
exhibits an increasing clustering coefficient for η < −0.2
[see Fig. (d)], and the best match with the Pokec OSN is
achieved at the value of η ¼ −0.65, which is, remarkably, a
negative value. This is yet another empirical proof of
Granovetter’s theory of the importance of weak ties in
processes of diffusion of information in social networks
[20]. An alternative empirical validation of the same
principle was provided in Ref. [25], where it was found
that the probability of accepting an invitation to join an
OSN is not proportional to the number of social contacts of
the invited individual but to the number of different social
contexts—the structural diversity—within the individual’s

life. Notice that a similar effect is achieved in our model
when the exponent η is negative. Indeed, suppose that a
user has a subset of k contacts forming a “strong” context,
that is, these k contacts are all connected among them.
This implies that the multiplicity of each link between our
user and their k contacts is m ¼ k − 1. Suppose now that
η ¼ −1, then the aggregated infectivity according to Eq. (3)
is proportional to k=ðmþ 1Þ ¼ const, which is precisely
the main result in Ref. [25].
The introduction of weighted transmissibilities in our

model does not affect significantly the evolution of the
global topological properties. Indeed, for η ¼ −0.65, the
virality mass media line behaves as it does in the basic
model with the difference that now the relation between λ
and μ is

μðλÞ ≈ ð0.21� 0.01Þλ: ð4Þ

As for the rest of the topological measures, the evolution of
the GCC, the size of the second largest connected compo-
nent, the ASPL, and the diameter are basically identical
to the case of the basic model and are shown in the
Supplemental Material [39]. In Fig. 5, we show results
for the number of components, the mean degree, the
assortativity coefficient, and the mean local clustering,
which are all in very good agreement with their empirical
counterparts.

III. DISCUSSION

Comprehensive data sets on the evolution of OSNs offer
us the opportunity to determine the principal mechanisms
involved in social contagion and online activity of indi-
viduals. In this respect, the OSN Pokec, with its peculiar
evolution and being almost isolated, is particularly appro-
priate. Interestingly, the evolution of Pokec’s topology is
characterized by a dynamical percolation transition, a rather
peculiar behavior in real evolving networks. We show that
this anomalous topological evolution can be explained very
precisely on a quantitative level by a two-layer model,
which accounts for the underlying real social structure,
combined with two main mechanisms. First, a viral effect,
responsible for the social contagion of new users and,
second, a mass media effect, leading to random subscrip-
tions of new users. Interestingly, the balance between these
two mechanisms is what governs the topological growth of
OSNs. In the particular case of the OSN Pokec, the
quantification of this balance tells us that the viral effect
is between 4 and 5 times stronger than the mass media
effect. This can explain the proliferation of viral marketing
campaigns, in detriment of traditional advertising [1]. To
our knowledge, for the first time a model with only very
few parameters yields quantitatively precise insight about
the topological formation of OSNs. This makes our model
a necessary foundation for the development of next-
generation online social networking services.

(a) (b)

FIG. 6. (a) Illustration of the strength of social ties defined by
Eq. (2). (b) Illustration of viral transmissibilities for negative η
defined by Eq. (3).
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Beyond the global behavior of our basic model, the
social neighborhood of individuals has shown to be crucial
to explain the evolution of local topological quantities in
Pokec. We find that viral transmissibility is inversely
proportional to the strength of social ties. This result is
particularly interesting as it corroborates recent empirical
findings concerning the role of “structural diversity” on
social contagion processes by analyzing Email invitations
from Facebook users [25]. However, our model allows us to
identify and quantify this effect exclusively from—and
hence its impact on thee topological evolution of the OSN.
Alongside Granovetter’s conclusion about the importance
of weak ties for individual success, our results give rise to
the interpretation that OSNs evolve in a way to improve the
possibilities for individual success. This might constitute an
important reason for the huge popularity of OSNs.
Our findings here suggest interesting future research

lines. Indeed, the particular OSN analyzed in this paper is
a quasi-isolated system and, thus, allows us to gauge the
fundamental mechanisms at play in the evolution of OSNs.
However, in a general situation, an entire ecosystem of
OSNsoperate simultaneously, competing for the sameusers,
which now become a scarce resource. The introduction of
competition amongOSNs in ourmodel opens the possibility
to develop an ecological theory of the digital world.
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