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DERIVATION OF THE DIFFERENTIAL EQUATION FOR THE n−POINT CORRELATION FUNCTION

The average of Eq (1) of the main text given the state of the system at time t, n(t) ≡ (n1(t), n2(t), · · · , nN (t)), can
be written as

〈ni(t+ dt)|n(t)〉 = ni(t) + dtAi(t), Ai(t) = −ni(t)δ[ti(t)] + (1− ni(t))
∑
j

aijλ[τji(t)]nj(t). (1)

Let us consider a set of n nodes I ≡ {i1, i2, · · · in}. The correlation function between these n nodes reads

ρ̇i1···in(t) =
1

dt

〈[∏
i∈I
〈ni(t+ dt)|n(t)〉 −

∏
i∈I

ni(t)

]〉
, (2)

where the outer average is over the state of the system at time t. Notice also that the factorization in the first term of
this equation is a direct consequence of the independence of the random variables ξi and ηi in Eq. (1) of the main text
for different nodes. The first term in Eq (2) can be written, by means of Eq (1) as

∏
i∈I
〈ni(t+ dt)|n(t)〉 =

n∑
k=0

∑
{Ik}

(dt)
k
∏
i∈Ik

ni(t)
∏
l∈Ik

Al(t), (3)

where {Ik} is the set of all subsets of I containing k nodes. Because of the term dtk, however, the expansion to linear
order in dt is a reduced sum over k < 2, and thus∏

i∈I
〈ni(t+ dt)|n(t)〉 =

∏
i∈I

ni(t) + dt
∑
i∈I

Ai(t)
∏
k∈I\i

nk(t). (4)

Therefore the n−point correlation function reads

ρ̇i1···in(t) = 〈
∑
i∈I

(1− ni(t))
∑
j

aijλ[τji(t)]nj(t)
∏
k∈I\i

nk(t)−
∑
i∈I

ni(t)δ(ti(t))
∏
k∈I\i

nk(t)〉 (5)

=
∑
i∈I

〈(1− ni(t))
∑
j

aijλ[τji(t)]nj(t)− ni(t)δ(ti(t))

 ∏
k∈I\i

nk(t)

〉
, (6)

from which Eq (6) of the main text follows immediately.

TIME τij OF ACTIVE LINK i− j DOES NOT DEPEND ON THE STATES OF OTHER NODES
DIFFERENT FROM i AND j

A critical step in our approach is to prove that

Prob(τji; t|ni = 0, nj = 1, {nk = 1, k ∈ Ii}) = Prob(τji; t|ni = 0, nj = 1). (7)
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The probability in the left hand side of this equation can be written as

Prob(τji; t|ni = 0, nj = 1, {nk = 1, k ∈ Ii}) =

∫
· · ·
∫
φ(τRi , τ

I
j , {τ Ik}; t)φ(τji|τRi , τ Ij , {τ Ik})dτRi dτ Ij

∏
k∈Ii

dτ Ik , (8)

where φ(τRi , τ
I
j , {τ Ik}; t) is the joint probability density, at time t, that given that node i is susceptible and nodes j

and {k ∈ Ii} are infected, the time elapsed since i recovered is τRi and the times elapsed since j and {k ∈ Ii} became
infected are τ Ij and {τ Ik}, respectively. By Bayes’ rule, φ(τji|τRi , τ Ij , {τ Ik}) is the probability density of the time τji
conditioned on the times τRi , τ

I
j , {τ Ik}. However, it is easy to see that since infection events take place in active links

independently, once τRi and τ Ij are fixed, τji is totally independent of the elapsed times since nodes other than j
became infected. Therefore,

φ(τji|τRi , τ Ij , {τ Ik}) = φ(τji|τRi , τ Ij ), (9)

which directly gives the result in Eq. (7).

GENERAL FORMALISM FOR λeff

Using the result in Eq. (9), at the steady state the probability density φ(τji) of the time elapsed since the infection
process of node j to node i started, given that node i is susceptible and node j is infected, can be written in general as

φ(τji) =

∫ ∫
φ(τji|τ Ij , τRi )φ(τ Ij , τ

R
i )dτ Ij dτ

R
i , (10)

where φ(τ Ij , τ
R
i ) is the joint probability that the time elapsed since j became infected is equal to τ Ij and the time

elapsed since i recovered is equal to τRi . If we assume that the two process are uncorrelated, φ(τ Ij , τ
R
i ) can be factorized

into φ(τ Ij , τ
R
i ) = φI(τ

I
j )φR(τRi ), and Eq. (10) reduces to

φ(τji) =

∫ ∞
0

dτ Ij φI(τ
I
j )

∫ ∞
0

dτRi φR(τRi )
{

Θ(τ Ij − τRi )φ(τji|τRi ≤ τ Ij ) + Θ(τRi − τ Ij )φ(τji|τRi > τ Ij )
}
, (11)

where Θ(t) is the Heaviside step function, φI(τ
I
j ) is the probability that the time elapsed since j became infected is

equal to τ Ij and φR(τRi ) is the probability that the time elapsed since i recovered is equal to τRi . The conditional

probability φ(τji|τRi > τ Ij ) is simply φ(τji|τRi > τ Ij ) = δ(τji − τ Ij ), and

φ(τji|τRi ≤ τ Ij ) =

∫ ∞
0

Θ(τ Ij − τRi − τ)δ(τji − (τ Ij − τ))ΨI(τ
I
j − τRi − τ)

∞∑
n=0

Pn(τ)dτ, (12)

where n is the number of infection attempts of node j to node i, Pn(τ) is the probability that the time elapsed since
node j became infected and the moment of his n-th fire is equal to τ , and ΨI(τ

I
j − τRi − τ) is the probability that the

time elapsed between the n-th fire and the n+ 1-th fire is greater than τji − τRi . As computed in Eq. (4) of the main
text, the probability that the time elapsed since j became infected is equal to τ Ij is simply

φI(τ
I
j ) = δ̃ΨR(τ Ij ). (13)

The survival probability ΨR(τ Ij ) of recovery events can be written as

ΨR(τ Ij ) =

∫ ∞
0

ω(u)e−uτ
I
j du = ω̂(τ Ij ), (14)

where ω(u) is the inverse Laplace transform of ΨR(τ Ij ). In Laplace space, the probability distribution Pn(τ) has a

convenient form, P̂n(u) =
[
ψ̂I(u)

]n
, where ψ̂I(u) is the Laplace transform of ψI(t). By inserting Eqs. (13) and (14)

into Eq. (11) we obtain

φ(τji) = δ̃

∫ ∞
0

dτRi φR(τRi )

∫ ∞
0

du e−uτjiω(u)

{
θ(τRi − τji) + θ(τji − τRi )ΨI(τji − τRi )

1

1− ψ̂I(u)

}
. (15)
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By inserting the form of φ(τji) into Eq. (10) of the main text, we obtain an expression for the infection rate λeff

λeff =

∫ ∞
0

duω(u)

̂[λIΦR](u) +

∧

[λI [φR ∗ΨI ]](u)
1

1− ψ̂I(u)

 , (16)

where λI is the infection hazard rate, ΦR(τRi ) and ΨI(t) are the survival probabilities of φR(τRi ) and ψI(t), respectively
and φR ∗ΨI is the convolution between φR(τRi ) and ΨI(t). At this point, some ansatz regarding the form of φR(τRi ),
the probability that the time elapsed since i recovered is equal to τRi , is needed to continue. We note that if one does
not consider the state of node i in the probability φR(τji), which corresponds to inserting φR(τRi ) = δ(τRi ) into Eq.
(15), one obtains

λmf = δ̃

∫ ∞
0

ω(u)
ψ̂I(u)

1− ψ̂I(u)
du. (17)

This effective infection rate λmf , already found in Cator et al. [1] by using a mean field approximation, is now obtained
within a more general formalism. A different possibility is to consider φR(τRi ) equal to an exponential distribution,

φR(τRi ) = we−wτ
R
i , (18)

with rate w. The rate w can be written as a simple function of the prevalence ρ, w = δρ/(1− ρ). However, even if it
were not possible to find a closed analytic form for the effective infection rate, one can resort to numerical simulation
in order to compute λeff . One can see that the exponential ansatz for the form of φR(τRi ) is correct for large values of
the prevalence ρ, but it fails for low prevalence, thus close to the epidemic threshold.

APPROXIMATIONS TO λapp

To find an infection rate which is accurate and analytically treatable close to the epidemic threshold, we follow a
different approach. As stated in the main text, we consider here the probability density ψ(τji) ≡ limt→∞ p(τji, ni =
0; t|nj = 1), which is the join probability that, given that node j is infected at the observation time, node i is susceptible
and the time elapsed since the last infection attempt from j to i is equal to τji. Our approximation consists of
estimating the probability that node i is susceptible at the observation time t, which depends on the time instant at
which node i became infected, this time instant being unknown in principle.

We first consider the case of low prevalence, ρst � 1. Then, let us consider separately the cases in which node j
attempts at least once to infect node i, n > 0, and the case of no attempts, n = 0. In the first case, at the time of
the last infection event from j to i, t− τji, node i either was already infected (in which case the infection attempt is
ineffective) or it became infected by this event (see Fig. 1a). In both cases, we are certain that node i is in an infected
state at time t− τji and, thus, the probability that node i recovers before the observation time t is 1−ΨR(τji). If
the prevalence is low, the probability that node i is subsequently infected by one of its neighbor (other than j) and
then recovers before the observation time is also very low, and we assume it to be zero. With these assumption, the
probability that node i is susceptible at time t is simply 1−ΨR(τji). If node j does not attempt to infect node i, we
cannot know for certain the state of node i. However, given that node j became infected at time t− τ Ij , one of his
neighbors must have infected him. Let us consider that node j has degree k. If the prevalence is low, it is very unlikely
to find more than one neighbor of node j infected simultaneously and we assume that only one of his neighbors was
infected and infected him. With probability 1/k, such infected node is node i (See Fig. 1b), so that i is infected at time
t− τ Ij , and the probability that node i is then susceptible at the observation time t is 1−ΨR(τ Ij ). With probability

1− 1/k, the infected node is a neighbor other than i and, thus, we assume that node i was susceptible at time t− τ Ij
and it will remain in this state until time t with probability equal to one. Summing up, if node j attempts at least
once to infect node i, then the probability that it is susceptible at the observation time is 1−ΨR(τji). Instead, if node
j does not attempt to infect node i, this probability reads (1−ΨR(τ Ij ))/k + (k − 1)/k = (k −ΨR(τ Ij ))/k. In the limit
of low prevalence, we expect this approximation to be exact. In the following, we also approximate the value of k by
the average degree, 〈k〉.

The probability density ψ(τji) can be written as

ψ(τji) =

∫ ∞
0

ψ(τji|τ Ij )φI(τ
I
j )dτ Ij , (19)
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Figure 1: Sketch of two possible ways to obtain the time τji and, simultaneously, node i infected at the observation time. In a,
node j has attempted to infect i at least once at time t − τji. This implies that node i must necessarily be infected at that
moment and, thus, it has to recover before the observation time. In b, node j has not attempted to infect i since it became
infected by node i. In this case, we know that i was infected when j became infected and, again, it has to recover before the
observation time.

where again φI(τ
I
j ) is the probability that the time elapsed since j became infected is equal to τ Ij . The conditional

probability ψ(τji|τ Ij ) is

ψ(τji|τ Ij ) = δ(τji − τ Ij )ΨI(τ
I
j )

[
〈k〉 −ΨR(τ Ij )

〈k〉

]
+

∫ τI
j

0

δ(τji − (τ Ij − τ)) [1−ΨR(τji)] ΨI(τ
I
j − τ)

∞∑
n=1

Pn(τ)dτ (20)

where the first term accounts for the case in which there are no infection attempts from j to i, n = 0, while the second
term accounts for the case n > 0. By inserting Eq. (13) into Eq. (19) and integrating over τ Ij , the probability ψ(τji)
reads

ψ(τji) = δ̃ΨI(τji)

{
ΨR(τji)

[
〈k〉 −ΨR(τji)

〈k〉

]
+ [1−ΨR(τji)]

∫ ∞
0

ΨR(τji + τ)

∞∑
n=1

Pn(τ)dτ

}
. (21)

If we restrict to the case of Markovian recovery, we can use its memoryless property, ΨR(τji + τ) = ΨR(τji)ΨR(τ). By
using the convenient Laplacian form of the probability distribution Pn(τ), one can obtain

ψ(τji) = δ̃
ΨI(τji)ΨR(τji)

1− ψ̂I(δ̃)

{
1−ΨR(τji)

[
〈k〉−1

(
1− ψ̂I(δ̃)

)
+ ψ̂I(δ̃)

]}
. (22)

The normalization of ψ(τji) reads

N =

∫ ∞
0

ψ(τji)dτji =
δ̃

1− ψ̂I(δ̃)

{
Ψ̂I(δ̃)− Ψ̂I(2δ̃)

[
〈k〉−1

(
1− ψ̂I(δ̃)

)
+ ψ̂I(δ̃)

]}
, (23)

therefore, by inserting Eq. (22) and Eq. (23) into Eq. (11) of the main text, one finally obtains the approximate
infection rate λapp presented in Eq. (12) of the main text.

In Fig. 2, we show the steady-state prevalence ρst as a function of the approximate effective infection rate λapp,
given by Eq. (12) of the main text, and the mean field effective rate λmf given by Eq. (17) for two extreme values of
the exponent αI controlling the interevent time infection distribution, αI = 0.25 and αI = 10. One can see that the
curves for λmf do not collapse onto one another, especially for the lattice and SF network substrate.
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Figure 2: Prevalence ρ as a function of the approximate effective infection rate λapp (points) and the mean field effective rate
λmf (continuous line), for different values of the exponent αI and different network substrate.

NUMERICAL SIMULATIONS OF THE NON-MARKOVIAN SIS DYNAMICS

To check the validity of the effective infection rates λeff and λapp, we run extensive numerical simulations of the
non-Markovian SIS dynamics. For each value of the average infection time 〈tI〉 and fixed average recovery time
〈tR〉 = δ̃−1 = 1, we simulate the non-Markovian SIS dynamics by implementing an algorithm based on a queue of
infection and recovery events.

At time t = 0, all nodes are in a susceptible state, and a set of fN randomly chosen nodes, with f = 0.5, change
their state to the infected one. In the algorithm, whenever a node i changes his state from susceptible to infected at
time t, he first randomly extracts his recovery time tR from the distribution ψR(t), and pushes his recovery event at
time t+ tR to the queue. He also starts k independent infection processes to his k neighbors. In each infection process
to a neighbor j, an infection event from node i to node j is scheduled at time t+ t1I , where t1I is randomly extracted
from the distribution ψI(t), only if t1I < tR, that is if node i is still infected at time t+ t1I . A second infection event
from node i to node j is scheduled at time t+ t1I + t2I , where t2I is randomly extracted from the distribution ψI(t), only
if t1I + t2I < tR, and so on until n (with possibly n = 0) infection events are generated and pushed to the queue.

The queue is pulled by following the time order of the events. If the pulled event is the recovery of node i, i changes
his state from infected to susceptible. If the pulled event is an infection event from node i to node j, and j is already
in a infected state, nothing happens, otherwise node j changes his state from susceptible to infected and schedules his
recovery and infection events, pushing them to the queue. The queue is pulled until either no more events are left (and
so all nodes are susceptible) or the time reaches a time Tmax, set conveniently. In order to measure the prevalence
in the steady state ρst and the effective infection rate λeff , we sample Ns = 104 time instants uniformly chosen in
[Tmin, Tmax], with Tmin chosen such that the stationary state is reached long before it. For each time instant, we
measure the prevalence and the values of τij for each active link between nodes i and j, so as to calculate λeff by
means of Eq. (10) of the main text.

We have double checked our event queue algorithm by simulating the non-Markovian SIS dynamics with a non-
Markovian Gillespie algorithm [2], which is much slower, and we obtained identical results for the prevalence and the
effective infection rate.
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EPIDEMIC THRESHOLD AND CRITICAL EXPONENTS

We run extensive numerical simulations of the non-Markovian SIS dynamics in order to evaluate its behavior close
to the epidemic threshold. We consider αI = 0.5 and αI = 2, and two different network substrates, 2D lattice and
RDR network. We address the critical properties by means of the lifespan method [3], in which the infection starts
with a single infected node. In the lifespan method, each realization is characterized by its lifetime, T , and its coverage,
C, defined as the number of distinct nodes that have become infected at least once. We let each realization run until
either the coverage C reaches a certain threshold C∗ (and we consider it endemic), or the realization dies out, and
we measure its lifetime T . We set C∗ = ΘN , with Θ = 0.9. We then measure the probability of having an endemic
realization P , the average lifetime 〈T 〉 and average square lifetime 〈T 2〉 over a number of runs Nrun, as a function of
the average infection time 〈tI〉 (corresponding to an effective rate λapp, hereafter λ for brevity) close to the epidemic
threshold, for different sizes N . We set Nrun = 105 for lattice, Nrun = 106 for RDR networks. For each value of N , λ,
αI and network substrate we fit the curves of 〈T 〉 and 〈T 2〉 to find the peaks 〈T 〉p and 〈T 2〉p and their corresponding
values of λ1p and λ2p. We set λp as the average of λ1p and λ2p, provided that λp falls within the λ1p and λ2p standard
errors. The corresponding endemic probability at the peak Pp is interpolated from the data.

The set of equations we used to evaluate the critical point λc and critical exponents β, δ, ν⊥ are

P (λc, N) ∼ N−β/ν⊥ (24)

Pp(N) ∼ N−β/ν⊥ (25)

|λc − λp(N)| ∼ N1/ν⊥ . (26)

〈Tn〉p(N) ∼ Nγn/ν⊥ (27)

(28)

We first evaluate the critical threshold λc by plotting the endemic probability P (λ,N) as a function of N , for several
values of λ close to λc, see the first row of Fig. 3. Through Eq (24), we estimate the value of λc to be the one which
produces the best fit of P (λc, N) as a power-law. We then plot the endemic probability at the peak Pp as a function
of the size N , see the second row of Fig. 3, and the difference |λc − λp| as a function of N , see the third row of Fig. 3.
We estimate ν⊥ by means of Eq (26). By means of Equations (24) and (25) we estimate β/ν⊥ equal to the average of
the fits of P (λc, N) and Pp(N), provided that β/ν⊥ falls within the standard errors of the two fits, and so we calculate
β, knowing the value of ν⊥. Finally, we plot the height of the peaks 〈T 〉p and 〈T 2〉p as a function of N , see the fourth
row of Fig. 3. We estimate γ2 and γ1 for lattices and γ2 for RDR networks by means of Eq (27), knowing the value of
ν⊥. For lattices, we calculate δ by means of the equivalence γn ∼ n− δ while for RDR networks we first check that
〈T 〉p diverges logarithmically as a function of N and then we calculate δ by means of the equivalence γn = n− δ. The
results are reported in Table 1 of the main text.

∗ Corresponding author: michele.starnini@gmail.com
† Corresponding author: marian.boguna@ub.edu
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Figure 3: Finite size scaling of a non-Markovian SIS dynamics with αI = 0.5 and αI = 2, on 2D lattice (on the left) and RDR
network (on the right). Symbols represent the results of numerical simulations, dashed lines represent power-law (or logarithmic,
in the case of 〈T 〉 for RDR) fits. In this Figure, we refer to λapp as to λ for brevity. Notice that, to compare with the values
found in the literature, in the case of the lattice we use the side of the lattice L instead of the number of nodes N = L2. Plots
show, from first to last row: (1) Probability that an outbreak is endemic for different values of λ, P (λ), as a function of the size
N . (2) Probability that an outbreak is endemic, P (λp), as a function of the size N , for λp corresponding to the peak of 〈T 2〉. (3)
Difference |λc − λp| as a function of N , for λp corresponding to the peak of 〈T 2〉. (4) Peak of 〈T 〉 and 〈T 2〉 as a function of N .
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