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Renormalization of networks with weak geometric coupling
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The renormalization group is crucial for understanding systems across scales, including complex networks.
Renormalizing networks via network geometry, a framework in which their topology is based on the location
of nodes in a hidden metric space, is one of the foundational approaches. However, the current methods assume
that the geometric coupling is strong, neglecting weak coupling in many real networks. This paper extends
renormalization to weak geometric coupling, showing that geometric information is essential to preserve self-
similarity. Our results underline the importance of geometric effects on network topology even when the coupling
to the underlying space is weak.
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The renormalization group remains an essential tool in
statistical physics to study systems at different length scales,
and for revealing the scale invariance and universal properties
of critical phenomena near continuous phase transitions where
fluctuations are strong [1]. The simplest technique for pro-
cesses on regular lattices is the block spin method proposed
by Kadanoff [2], where blocks of nearby nodes are grouped
together into supernodes whose state is determined by some
averaging rule. Extending this method to complex networks
is complicated by their small world property, which makes
the concept of closeness fuzzy and hinders the definition of
supernodes [3].

In complex networks, different renormalization schemes
have been proposed. Some are based on ensemble self-
similarity [4], while others use proximity measures. In the box
covering method, nodes are grouped depending on topological
distance [5], and in Laplacian renormalization, closeness is
based on diffusive distance [6]. As an alternative, network
geometry [7,8] is based on the assumption that nodes lie in
an underlying metric space such that closer nodes are more
similar and therefore more likely to be connected, and so
it offers a natural framework for describing and renormaliz-
ing networks. The family of models with latent hyperbolic
geometry have shown to be highly effective in generating
network structures with realistic topological features [9–16],
percolation characteristics [17,18], spectral aspects [19], and
self-similarity [9].

These geometric models have served as a foundation
for defining a renormalization group for complex networks
[20,21], in which adjacent nodes are coarse grained into
supernodes on the basis of their coordinates in their latent
geometry. Building upon this concept, the geometric renor-
malization (GR) approach has revealed that scale invariance
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is a pervasive symmetry in real networks [20]. From a prac-
tical perspective, GR has also enabled the generation of
scaled-down self-similar replicas—an essential tool for fa-
cilitating the computationally challenging analysis of large
networks. Additionally, when combined with scaled-up repli-
cas produced through a fine-graining reverse renormalization
technique [21], it provides a means to explore size-dependent
phenomena.

GR typically assumes that real networks, which display
high levels of clustering, are strongly coupled to their latent
geometry. However, the model presents a phase transition at a
critical coupling between the geometry and the topology of
a network where it goes from a strongly geometric regime
with a finite density of triangles in the thermodynamic limit
to a weakly geometric regime where this quantity vanishes
[9]. Many real networks with significant triangle densities
[22] are better described in a quasigeometric domain of the
weakly geometric region, in which the decay of the cluster-
ing coefficient is very slow [23]. In this paper, we develop
GR in the regime of weak geometric coupling and apply the
extended renormalization scheme to a set of real networks
in the quasigeometric domain. We show that, in this regime,
geometric information is essential for obtaining self-similarity
in important network measures across scales.

The geometric renormalization group for complex net-
works introduced in Ref. [20] is constructed upon the S1

model [9]. Specifically, the connectivity in the S1 model is
determined by “popularity,” which is related to the degree
of a node, and by “similarity,” which encodes for all other
inherent properties of the nodes. The similarity dimension is
explicit; nodes are placed on a circle with radius R = N/(2π )
and given angular coordinates θi. In contrast, the popularity
dimension is encoded by a hidden degree κi drawn from
some arbitrary distribution ρ(κ ), typically a power law with
exponent γ . Two nodes are connected with probability

pi j = 1

1 + (R�θi j )β

(μ̂κiκ j )max (1,β )

, (1)
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where μ̂ sets the average degree 〈k〉 and where �θi j = π −
|π − |θi − θ j || defines the angular distance between the two
nodes. The parameter β, often referred to as the inverse tem-
perature in analogy to statistical physics, sets the level of
clustering in the network. The S1 model has realizations that
are realistic and maximally random [24]. Note that the S1

model has an isomorphic equivalent in the hyperbolic plane,
the H2 model [10], in which the popularity dimension is made
explicitly geometric by mapping the hidden degree κ to a
radial coordinate r.

The inverse temperature β calibrates the coupling between
the underlying metric space and the geometry: when β is high,
pi j is large only when �θi j is small or κs are large, which
implies that the network contains mostly short ranged links.
Conversely, when β → 0, the dependence of the connection
probability on the angular coordinate is lost and links of all
lengths are present. Note that the dependence on the popular-
ity dimension does not vanish, and that at β = 0 our ensemble
is equivalent to that of the hyper-soft configuration model
[25]. It has been shown that, in the thermodynamic limit,
clustering is finite for β > 1 and vanishes when 0 � β � 1
[9]. However, the slow approach to the thermodynamic limit
in the region 0.5 � β � 1 below and at the transition implies
that certain real networks that show significant clustering can
be better described in this so-called quasigeometric domain
[23].

The first step in GR is to define nonoverlapping sectors
along the S1 circle containing each r consecutive nodes. To
determine the coordinates of the nodes in the geometric space
and, hence, which nodes are consecutive in the similarity
space, real networks can be embedded in the S1/H2 model by
finding the coordinates that are most congruent with the net-
work topology. One embedding tool is Mercator [26], which
was recently extended to handle weakly geometric networks
[22] and higher dimension metric spaces [27]. The second
step is to coarse grain the nodes within a group to form a
single supernode, whose angular coordinate and hidden de-
gree are functions of the coordinates and hidden degrees of its
constituents. The connectivity of the new network is defined
by connecting two supernodes if any pair of their respective
constituents are connected. This procedure can be repeated
iteratively starting from the original layer l = 0. Each layer l
is then rl times smaller than the original network. This defines
the renormalization group flow.

In the following, we extend this procedure to the region
β � 1. We use a compact notation that includes the results in
[20] for β > 1 (see Sec. I of the Supplemental Material for
details [28]). Demanding that the connection probability re-
mains invariant under the renormalization flow independently
of β, i.e., that each scaled-down network is congruent with the
S1 model, leads to the transformation

κ (l+1)
σ =

⎡
⎣ ∑

i∈S(σ )

(
κ

(l )
i

)max(1,β )

⎤
⎦

1
max(1,β )

(2)

for the hidden degrees. Here, S (σ ) represents the set of
constituent nodes of supernode σ . Note that in the weak
coupling regime max(1, β ) = 1, reducing the definition to a
simple sum. This definition satisfies the semigroup property,

i.e., renormalizing twice with groups of r is the same as
renormalizing once with groups of r2. The global param-
eters flow as R(l+1) = R(l )/rl , μ̂(l+1) = μ̂(l )/rmin(1,β ), and
β (l+1) = β (l ).

The flow of the average hidden degree can be derived
from the flow of the hidden degrees. In the region β � 1 (the
case β > 1 was already investigated in Ref. [20]), the hidden
degree of a supernode is simply given by the sum of the hidden
degrees of its constituents, which implies

〈
κ (l+1)

σ

〉 =
〈 ∑

i∈S(σ )

κ
(l )
i

〉
=

∑
i∈S(α)

〈
κ

(l )
i

〉 = r〈κ (l )〉. (3)

Thus, 〈κ (l+1)〉 = rξ 〈κ (l )〉, where ξ = 1 for β � 1. Using this,
it can be shown that the flow of the average degree is
〈k(l+1)〉 = rν〈k(l )〉, where ν = 2ξ − 1 = 1. The flow of the
average degree in the weakly geometric regime is, thus, in-
versely proportional to the flow of the system size, which
means that no links are lost as one performs GR steps. This
is because links are long ranged in this regime, making it
unlikely that a node is connected to two nodes that lie within
the same supernode.

Concerning the flow of the angular coordinate, any trans-
formation that preserves the order of nodes in the original
layer and preserves the rotational symmetry would work. We
choose

θ (l+1)
σ =

∑
i∈S(σ )

(
κ

(l )
i

)max(1,β )
θ

(l )
i∑

i∈S(σ )

(
κ

(l )
i

)max(1,β ) , (4)

the weighted average of the constituent nodes. The definition
in Eq. (4) satisfies the semigroup property. In Fig. 1, we
show the behavior of several network properties in the flow of
synthetic scale-free networks generated with the S1 model. In
Fig. 1(a), the tail of the degree distribution of rescaled degrees
k(l )

res = k(l )/〈k(l )〉 for β = 0.8 in the quasigeometric domain is
self-similar under renormalization. This self-similarity is also
proven analytically in Sec. II of the Supplemental Material
[28]. For large enough l , this self-similarity will always be lost
for finite systems like real networks. The finite size induces a
cut-off in the degree distribution, rendering its variance finite
and therefore leading to the applicability of the central limit
theorem, resulting in a Gaussian distribution.

In Fig. 1(b), we plot the dependence of the exponent ν

characterizing the flow of the average degree as a function
of β. As discussed above, in the region β � 1, no edges get
destroyed in the renormalization flow as the long range nature
of links in this regime makes it extremely unlikely that two
or more edges connect nodes in the same two supernodes.
However, such situations do arise for finite systems, leading
to the loss of links along the flow and, thus, to ν < 1, as can
be observed in Fig. 1(b). This finite size effect is stronger the
closer to β = 1, and can therefore be seen as quasigeometric
behavior. When β > 1, the exponent ν decreases even further
and we enter in the geometric regime described in Ref. [20].

In Fig. 1(c) we display the average local clustering co-
efficients per degree class, which is again self-similar when
rescaled as c(l )

res(k
(l ) ) = (c(l )(k(l ) ))/c(l ), where c(l ) is the av-

erage local clustering coefficient. Rescaling is necessary
because c(l ) is not conserved under the RG flow for β � 1.
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FIG. 1. (a) The log-binned degree distribution P(l )(k(l ) ) as a func-
tion of the rescaled degrees k(l )

res = k/〈k(l )〉. (b) The exponent ν in
〈k(l+1)〉 = rν〈k(l )〉, as a function of β. (c) Rescaled average local
clustering per degree class c(l )

res(k
(l ) ) = (c(l )(k(l ) ))/c(l ) as a function

of the rescaled degrees. (d) Average local clustering coefficient c(l )

as a function of the layer (l ). We display the flow under standard GR
with deterministic links (orange squares), GR where links are made
probabilistically (green stars), and new independent S1 realizations
created in every layer (blue triangles). In this latter case, the networks
size and the average degree match the GR in every layer. The original
networks were generated with the S1 model for N = 65536 and
〈k〉 = 6.

This is confirmed by Fig. 1(d), where the orange squares rep-
resent the evolution of c(l ) as a function of the renormalization
step l for networks at β = 0.8. This behavior is in contrast to
the situation for β > 1, where c only depends on the inverse
temperature β, which is unaffected by the renormalization
procedure. For β � 1, clustering depends on the systems size
and the average degree [23], which do change under the RG
flow.

This result is not in tension with the notion of self-
similarity as, granted the network is well described by the
S1 model, a smaller version of a certain network should in-
deed have a higher clustering coefficient. However, comparing
networks obtained through GR and with the S1 model in
Fig. 1(d), we see that the flows of c(l ) do not match. This
discrepancy is because the largest contribution to the average
local clustering coefficient comes from nodes with small de-
grees for which self-similarity is not fulfilled, as can be seen
in Fig. 1(a). To prove that the discrepancy does not stem from
a lack of congruence with the S1 connection probability, we
repeated the same analysis for networks where the hidden
degrees of the supernodes were generated using Eqs. (2) and
(4), but where the connections were made randomly following
Eq. (1). In Fig. 1(d), this case is represented by green stars and
coincides with the GR flow. The discrepancy, thus, originates
in the lack of self-similarity of the hidden degree distribution
at small κ .

FIG. 2. The flow of the rescaled average local clustering coeffi-
cient per rescaled degree class under the randomized coarse-graining
scheme for different β ′s: (a) β = 0.5, (b) β = 0.7, (c) β = 0.9, and
(d) β = 1.1. Here, l = 0 represents the original network and we
perform three consecutive renormalization steps with r = 2, leading
to the cases l = 1, 2, and 3. The network parameters used to generate
the original networks are {N, γ , 〈k〉} = {65536, 2.9, 6}.

Geometry is still important for renormalizing networks
with weak geometric coupling. To prove this, we compared
GR on synthetic networks with β � 1 with a second scheme
that is explicitly nongeometric, where supernodes are created
by choosing constituent nodes at random. In this scheme,
the angular coordinate of the supernodes is meaningless by
construction. Nevertheless, for convenience, we redefined it
such that it represents a proper average even for constituent
nodes that lie far away from each other. To this end we use the
weighted circular mean, which reduces to Eq. (4) when the
angular spread is small [28]. A priori, the random scheme will
not lead to a conserved connection probability as the proof in
Sec. I of the Supplemental Material [28] requires the angular
separation of nodes within a supernode to be much smaller
than the angular separation between supernodes. However,
one might argue that the angular coordinate is irrelevant as
the regime β � 1 is nongeometric in the thermodynamic limit,
and self-similar network copies could, thus, still be obtainable.
As we show below, for finite networks this is only the case for
extremely small values of β � 0.5, which we call the nonge-
ometric regime. We first study self-similarity of the clustering
spectrum as clustering is the key property of geometric graphs
due to its relation to the triangle inequality. In Fig. 2, we
show the results for the randomized coarse-graining scheme.
We see that self-similarity is obtained for the smallest β’s,
implying that geometric information is not important here.
However, the overlap between the different curves gets
progressively worse as β increases, reflecting the growing
importance of the geometry. The self-similarity is lost at β ≈
0.7, very close to the theoretical transition point β ′

c = 2/γ

between the non and quasigeometric regimes [23]. The curves
flatten out with l , implying that more and more of the clus-
tering in the network is due to high degree nodes. This is to
be expected, as the random coarse-graining scheme destroys
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FIG. 3. (a), (b) The flow of the connection probability as a func-
tion of χ = xβ

nm/(μ̂κnκm )max(1,β ) under the RGN where nodes are
combined sequentially (a) or randomly (b) along the circle. The
dotted lines give the theoretical curve. (c) The mean difference be-
tween the two previous cases for l = 1 and for three different γ ’s.
In all cases the networks were generated with the S1 model with
N = 65536 and 〈k〉 = 6.

the coupling of the network to the geometry. This leads to
networks that are similar to those generated with the config-
uration model, where we know that most of the clustering is
due to high degree nodes [29].

To quantify further how much poorer the results of the
randomized coarse-graining scheme are in comparison to GR,
we measured how well the empirical connection probability,
p(χ ), of the renormalized network fits the theoretical one
in the S1 model. After obtaining the hidden coordinates,
the parameters χi j = xβ

i j/(μ̂κiκ j )max(1,β ) were determined for
each pair of nodes. These values were binned logarithmi-
cally, and for each bin the proportion of links versus nonlinks
was calculated to produce the inferred connection probabil-
ity p(χ ). The results of this analysis are shown in Fig. 3
where we have used networks in the quasigeometric regime
with β = 0.8. Figure 3(a) shows the inferred connection
probability of the different renormalized layers for the stan-
dard GR, where geometric information is used to define the
supernodes. In Fig. 3(b), we see the same results but for
the case where the nodes are chosen at random. Clearly,
while GR produces self-similar copies congruent with the
S1 connection probability, the random procedure does not.
This confirms that in the quasigeometric regime geometric
information is important even though the geometric coupling
is weak.

We plot the average difference between the connection
probabilities of the two schemes at layer l = 1 as a function
of the inverse temperature β in Fig. 3(c). To compute this dif-
ference, one first samples parameters χ

(l=1)
i j logarithmically.

For each of these values, one finds the observed connection

probability for the two schemes. One then takes the difference
between these cases and averages this over the sampled
distances. Once again, three different behaviors can be ob-
served. In the geometric regime (β > 1), the difference
between the two methods is large. For β’s in the quasigeomet-
ric regime, the difference decreases, and it goes to zero in the
nongeometric regime. The transition point between the non
and quasigeometric regimes shifts to higher betas when the
heterogeneity of the network is increased, in line with the the-
oretical prediction that this transition occurs at β ′

c = 2/γ [23].
The discrepancy between the curves at β > 1 comes from the
fact that not only similarity but also popularity plays a role in
the connection probability, and this information plays a more
important role when the network is more heterogeneous.

Now that we have set up the renormalization procedure
β � 1 and shown that geometric information is relevant in
this regime, we are able to study the self-similarity of weakly
geometric real networks [22]. In Figs. 4(e) and 4(f) the degree
distribution and clustering spectrum of several of those real
networks and their scaled-down replicas are shown. In partic-
ular, we study the genetic multiplex of the nematode worm C.
Elegans [Figs. 4(a) and 4(b)] [30], the human protein-protein
interaction network [Figs. 4(c) and 4(d)] [31], and the interac-
tion network of users on the online Q&A site MathOverflow
[Figs. 4(e) and 4(f)] [32]. The embeddings of these networks
in the quasigeometric domain were produce with Mercator
[22,26]. Further details about the networks can be found in
Sec. III of the Supplemental Material [28].

In all cases, the curves remain invariant under repeated ap-
plication of GR. Only for large l does the degree distribution
tend to a more homogeneous distribution. This is once again a
finite size effect. For the MathOverflow network, we show the
H2 representation of the original [Fig. 4(g)] and scaled-down
[Fig. 4(h)] networks. We report similar results for a wide range
of other networks [30–40] in Sec. IV of the Supplemental
Material [28].

Finally, soft communities, encoded in the nonhomoge-
neous placement of nodes in the similarity space get preserved
in the GR procedure. An example of this is in the Supplemen-
tal Material. In Fig. S7, the distribution of nodes is clearly
not homogeneous, with several regions divided by large gaps.
We see that as one performs GR, these regions persist, thus
preserving the soft community structure.

In summary, we have extended the geometric renormal-
ization scheme to networks in the weakly geometric regime.
The different connection probabilities on both sides of the
clustering transition at βc = 1 imply an altered transforma-
tion law for the hidden degrees and a different scaling of
the average degree as successive renormalization steps are
performed. However, these differences do not change the
paradigm that the geometric renormalization scheme can
produce self-similar network replicas on both sides of the tran-
sition. In fact, geometric information is essential for achieving
this goal when β � 0.5. As in the geometric case, these
replicas have many applications [20]. For instance, they en-
able finite size scaling studies of real networks from single
snapshots and the identification of communities by lever-
aging the mesoscopic information encoded in the different
multiscale layers. In the quasigeometric domain 0.5 � β � 1,
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FIG. 4. The degree distribution and rescaled average local clustering coefficient as functions of the rescaled degree for (a), (b) the genetic
multiplex of the yeast S.cerevisiae, (c), (d) the human protein-protein interaction network, and (e), (f) the interaction network of users on the
online Q&A site MathOverflow. For this last network, the H2 representations of the (g) original (l = 0) and (h) renormalized (l = 3) networks
are shown. The details of these networks are given in the SM [28].

one must define supernodes by grouping consecutive nodes
along the S1 circle in order to obtain self-similarity in the
clustering spectrum and in the connection probability. This
underlines the importance of geometric information for un-
derstanding the network topology even when the geometric
coupling is weak. In contrast, for β � 0.5 it does not matter
how nodes are grouped. This implies that, here, the con-
nectivity is solely determined by the degree distribution,
making them effectively nongeometric. Finally, we reveal the
scale invariance of many quasigeometric real networks. These
results prove once again the importance of the geometric
renormalization approach to reveal hidden symmetries in real
networks.

The code of the Mercator embedding tool used in this paper
is publicly available at [41].
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