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Passeig Llúıs Companys 23, E-08010 Barcelona, Spain

The Renormalization Group is crucial for understanding systems across scales, including complex
networks. Renormalizing networks via network geometry, a framework in which their topology is
based on the location of nodes in a hidden metric space, is one of the foundational approaches. How-
ever, the current methods assume that the geometric coupling is strong, neglecting weak coupling in
many real networks. This paper extends renormalization to weak geometric coupling, showing that
geometric information is essential to preserve self-similarity. Our results underline the importance
of geometric effects on network topology even when the coupling to the underlying space is weak.

The Renormalization Group remains an essential tool
in statistical physics to study systems at different length
scales, and for revealing the scale invariance and universal
properties of critical phenomena near continuous phase
transitions where fluctuations are strong [1]. The sim-
plest technique for processes on regular lattices is that of
the block spin method proposed by Kadanoff [2], where
blocks of nearby nodes are grouped together into supern-
odes whose state is determined by some averaging rule.
Extending this method to complex networks is compli-
cated by their small world property, which makes the
concept of closeness fuzzy and hinders the definition of
supernodes [3].
In complex networks, the first renormalization scheme

was the box covering method, where nodes are grouped
depending on topological distance [4]. Other methods are
based on the graph Laplacian, where closeness is based
on diffusive distance [5]. Finally, network geometry [6, 7]
is based on the assumption that nodes lie in an under-
lying metric space such that closer nodes are more sim-
ilar and therefore more likely to be connected, and so
it offers a natural framework for describing and renor-
malizing networks. The family of models with latent hy-
perbolic geometry have shown to be highly effective in
generating network structures with realistic topological
features [8–15], percolation characteristics [16, 17], spec-
tral aspects [18], and self-similarity [8].
These models have served as a foundation for defining

a renormalization group for complex networks [19, 20], in
which adjacent nodes are coarse-grained into supernodes
on the basis of their coordinates in their latent geometry.
Building upon this concept, the geometric renormaliza-
tion (GR) approach has revealed that scale invariance
is a pervasive symmetry in real networks [19]. From a
practical perspective, GR has also enabled the genera-
tion of scaled-down self-similar replicas—an essential tool
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for facilitating the computationally challenging analysis
of large networks. Additionally, when combined with
scaled-up replicas produced through a fine-graining re-
verse renormalization technique [20], it provides a means
to explore size-dependent phenomena.

GR typically assumes that real networks, which dis-
play high levels of clustering, are strongly coupled to
their latent geometry. However, the model presents a
phase transition at a certain critical coupling of the ge-
ometry and the topology of a network where the it goes
from a strongly geometric regime with a finite density of
triangles in the thermodynamic limit to a weakly geomet-
ric regime where this quantity vanishes [8]. It has been
shown that many real networks with significant triangle
densities [21] are better described in a quasi-geometric
domain of the weakly geometric region, in which the de-
cay of the clustering coefficient is very slow [22]. In this
paper, we develop GR in the regime of weak geometric
coupling and apply the extended renormalization scheme
to a set of real networks in the quasi-geometric domain.
We show that, in this regime, geometric information is es-
sential for obtaining self-similarity in important network
measures across scales.

The geometric renormalization group for complex net-
works introduced in Ref. [19] is constructed upon the S1
model [8]. Specifically, the connectivity in the S1 model is
determined by ‘popularity’, which is related to the degree
of a node, and by ‘similarity’, which encodes for all other
inherent properties of the nodes. The similarity dimen-
sion is explicit; nodes are placed on a circle and given an-
gular coordinates θi. The circle has radius R = N/(2π),
such that the density of points remains constant for dif-
ferent network sizes. In contrast, the popularity dimen-
sion is encoded by a hidden degree κi drawn from some
arbitrary distribution ρ(κ), typically a power law with
exponent γ. Two nodes are connected with probability

pij =
1

1 +
(R∆θij)β

(µ̂κiκj)max (1,β)

, (1)
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where µ̂ sets the average degree ⟨k⟩ and where ∆θij =
π − |π − |θi − θj || defines the angular distance between
the two nodes. The parameter β, often referred to as the
inverse temperature in analogy to statistical physics, sets
the level of clustering in the network. The S1 model has
realizations that are realistic and maximally random, in
that their connection probability defines a ensemble that
maximizes entropy [23]. Note that the S1 model has an
isomorphic equivalent in the hyperbolic plane, the H2

model [9], in which the popularity dimension is made
explicitly geometric by mapping the hidden degree κ to
a radial coordinate r.

The inverse temperature β calibrates the coupling be-
tween the underlying metric space and the geometry:
when β is high, pij is large only when ∆θij is small or
κs are large, which implies that the network contains
mostly short ranged links. Conversely, when β → 0, the
dependence of the connection probability on the angu-
lar coordinate is lost and long range links are as likely
as short range ones. Note that the dependence on the
popularity dimension does not vanish, and that at β = 0
our ensemble is equivalent to that of the hyper-soft con-
figuration model [24]. It has been shown that, in the
thermodynamic limit, clustering is finite for β > 1 and
vanishes when 0 ≤ β ≤ 1 [8]. However, the slow approach
to the thermodynamic limit in the region 0.5 ≲ β < 1
below the transition implies that certain real networks
that show significant clustering can be better described
in this so-called quasi-geometric domain [22].

The first step in GR is to define non-overlapping sec-
tors along the S1 circle containing each r consecutive
nodes. To determine the coordinates of the nodes in the
geometric space and, hence, which nodes are consecutive
in the similarity space, real networks can be embedded
in the S1/H2-model by finding the coordinates that are
most congruent with the network topology. One such
embedding tools for networks in the geometric regime is
D-Mercator [25]. The second step is to coarse grain the
nodes within a group to form a single supernode, whose
angular coordinate and hidden degree are functions of
the coordinates and hidden degrees of its constituents.
It is essential that the supernode order along the circle
preserves the order of nodes in the original layer. The
connectivity of the new network is defined by connect-
ing two supernodes if any pair of their respective con-
stituents are connected. This procedure can be repeated
iteratively starting from the original layer l = 0. Each
layer l is then rl times smaller than the original network.
This then defines the renormalization group flow.

In the following, we extend this procedure to the re-
gion β ≤ 1. We use a compact notation that includes
the results in [19] for β > 1 (see Supplementary Informa-
tion I for details [26]). Demanding that the connection
probability remains invariant under the renormalization
flow independently of β, i.e. that each scaled-down net-
work is congruent with the S1-model for weak or strong

geometric coupling, leads to the transformation

κ(l+1)
σ =


 ∑

i∈S(σ)

(
κ
(l)
i

)max(1,β)




1
max(1,β)

(2)

for the hidden degrees. Here, S(σ) represents the set
of constituent nodes of supernode σ. Note that in the
weak coupling regime max(1, β) = 1, reducing the def-
inition to a simple sum. This definition satisfies the
semi-group property, i.e. renormalizing twice with groups
of r is the same as renormalizing once with groups of
r2. The global parameters flow as R(l+1) = R(l)/rl,
µ̂(l+1) = µ̂(l)/rmin(1,β), and β(l+1) = β(l).
The flow of the average hidden degree can be derived

from the flow of the hidden degrees. In the region β ≤ 1
(the case β > 1 was already investigated in Ref. [19]) the
hidden degree of a supernode is simply given by the sum
of the hidden degrees of its constituents, which implies

⟨κ(l+1)
σ ⟩ =

〈 ∑

i∈S(σ)

κ
(l)
i

〉
=

∑

i∈S(α)

⟨κ(l)
i ⟩ = r⟨κ(l)⟩. (3)

Thus, ⟨κ(l+1)⟩ = rξ⟨κ(l)⟩ where ξ = 1 for β ≤ 1. Using
this, it can be shown that the flow of the average degree
is ⟨k(l+1)⟩ = rν⟨k(l)⟩, where ν = 2ξ − 1 = 1. The flow
of the average degree in the weakly geometric regime is,
thus, inversely proportional to the flow of the system
size, which means that the amount of links E = N⟨k⟩/2
is a constant under renormalization, i.e. that no links
are lost as one performs GR steps. This result implies
that, on average, there is only one connection between
the constituents of a pair of supernodes. This has to do
with the fact that, for β ≤ 1, connections are long ranged
in the thermodynamic limit. It is therefore exceedingly
unlikely that a node is connected to two nodes so close
together in the latent space that when we perform a GR
step they end up in the same supernode.
Concerning the flow of the angular coordinate, any

transformation that preserves the order of nodes in the
original layer would work as long as it preserves the ro-
tational invariance of the original model. We choose

θ(l+1)
σ =

∑
i∈S(σ)

(
κ
(l)
i

)max(1,β)

θ
(l)
i

∑
i∈S(σ)

(
κ
(l)
i

)max(1,β)
, (4)

the weighted average of the constituent nodes. This is a
slightly different definition as the one used in Ref. [19],
where the weighted power mean with exponent max(1, β)
was used. However, for larger β this introduces a bias
towards larger constituent θ’s, which is not in line with
the rotational symmetry of the system. The definition in
Eq. (4) satisfies the semi-group property.
In Fig. 1, we show the behavior of several network

properties in the flow of synthetic scale-free networks gen-
erated with the S1 model. In Fig. 1a, the tail of the com-
plementary cumulative degree distribution of rescaled de-

grees k
(l)
res = k(l)/⟨k(l)⟩ for β = 0.8 in the quasi-geometric
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FIG. 1. (a) The log-binned complementary cumulative degree

distribution P (l)(k(l)) as a function of the rescaled degrees

k
(l)
res = k/⟨k(l)⟩. (b) The exponent ν in ⟨k(l+1)⟩ = rν⟨k(l)⟩,

as a function of β. (c) Rescaled average local clustering per

degree class c
(l)
res(k

(l)) = (c(l)(k(l)))/c(l) as a function of the

rescaled degrees. (d) Average local clustering coefficient c(l)

as a function of the layer (l). We display the flow under stan-
dard GR with deterministic links (orange squares), GR where
links are made probabilistically (green stars), and new inde-
pendent S1 realizations created in every layer (blue triangles).
In this latter case, the networks size and the average degree
match the GR in every layer. The original networks were gen-
erated with the S1 model for N = 65536 and ⟨k⟩ = 6.

domain is self-similar under renormalization. This self-
similarity is also proven analytically in Supplementary
Information II [26]. For large enough l, this self-similarity
will always be lost for finite systems like real networks.
This is because the finite size induces a cut-off in the de-
gree distribution, rendering its variance finite and there-
fore leading to the applicability of the central limit the-
orem, resulting in a Gaussian distribution.

In Fig. 1b, we plot the dependence of the exponent ν
characterizing the flow of the average degree as a function
of β. As discussed above, in the region β ≤ 1 no edges get
destroyed in the renormalization flow as the long range
nature of links in this regime makes it extremely unlikely
that two or more edges connect nodes in the same two
supernodes. However, such situations do arise for finite
systems, leading to the loss of links along the flow and,
thus, to ν < 1, as can be observed in Fig. 1b. This
finite size effect is stronger the closer to β = 1, and can
therefore be seen as quasi-geometric behavior. When β >
1, the exponent ν decreases even further and we enter in
the geometric regime described in Ref. [19].

In Fig. 1c we display the average local clustering coef-
ficients per degree class, which is again self-similar when

rescaled as c
(l)
res(k(l)) = (c(l)(k(l)))/c(l), where c(l) is the

average local clustering coefficient. Rescaling is neces-
sary because c(l) is not conserved under the RG flow for
β < 1. This is confirmed by Fig. 1d, where the orange
squares represent the evolution of c(l) as a function of
the renormalization step l for networks at β = 0.8. This
behavior is in contrast to the situation for β > 1, where
c only depends on the inverse temperature β, which is
unaffected by the renormalization procedure. For β ≤ 1,
clustering depends on the systems size and the average
degree [22], which do change under the RG flow.

This result on its own is not in tension with the no-
tion of self-similarity as, granted the network is well de-
scribed by the S1-model, a smaller version of a certain
network should indeed have a higher clustering coeffi-
cient. However, comparing networks obtained through
GR (orange squares) and with the S1-model (blue tri-

angles) in Fig. 1d, we see that the flows of c(l) do not
match. This discrepancy is caused by the fact that the
largest contribution to the average local clustering coef-
ficient comes from nodes with small degrees for which
self-similarity is not fulfilled, as can be seen in Fig. 1a.
To prove that the discrepancy does not stem from a lack
of congruence with the S1 connection probability, we re-
peated the same analysis for networks where the hidden
degrees of the supernodes were generated using Eqs. (2)
and (4) but where the connections were made randomly
following Eq. (1). In Fig. 1d, this case is represented by
green stars and coincides with the GR flow. The discrep-
ancy, thus, originates in the lack of self-similarity of the
hidden degree distribution at small κ.

Geometry is still important for renormalizing networks
with weak geometric coupling. To prove this, we com-
pared GR on synthetic networks with β ≤ 1 with a sec-
ond scheme that is explicitly non-geometric, where su-
pernodes are created by choosing constituent nodes at
random. In this scheme, the angular coordinate of the
supernodes is meaningless by construction. Neverthe-
less, for convenience, we redefined it such that it repre-
sents a proper average even for constituent nodes that
lie far away from each other. To this end we use the
weighted circular mean, which takes coordinates along
the circle to represent roots of unity, which are then
summed, weighted by the hidden degrees of nodes in the
same way as in Eq. (4). Finally, the argument of the
result is taken to obtain the angular coordinate of the
supernode. Note that this definition reduces to Eq. (4)
when the angular spread is small [26]. In general, the
random scheme will not lead to a conserved connection
probability as the proof in Supplementary Information
I [26] requires the angular separation of nodes within a
supernode to be much smaller than the angular separa-
tion between supernodes. However, one might argue that
the angular coordinate is irrelevant as the regime β < 1 is
a priori non-geometric in the thermodynamic limit and
self-similar network copies could, thus, still be obtain-
able. As we show below, for finite networks this is only
the case for extremely small values of β ≲ 0.5, which we
call the non-geometric regime.
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FIG. 2. The flow of the rescaled average local clustering coef-
ficient per rescaled degree class under the randomized coarse-
graining scheme for different β′s: (a) β = 0.5, (b) β = 0.7,
(c) β = 0.9, (d) β = 1.1. Here, l = 0 represents the original
network and we perform three consecutive renormalization
steps with r = 2, leading to the cases l = 1, 2 and 3. The net-
work parameters used to generate the original networks are
{N, γ, ⟨k⟩} = {65536, 2.9, 6}.

We first study self-similarity of the clustering spectrum
as clustering is the key property of geometric graphs due
to its relation to the triangle inequality. In Fig. 1, it
is shown that, for a scale-free synthetic network with
β = 0.8, GR reveals self-similar behavior in the renor-
malization flow. In Fig. 2, we show the results for
the randomized coarse-graining scheme. We see that
self-similarity is obtained for the smallest β’s, imply-
ing that geometric information is not important here.
However, the overlap between the different curves gets
progressively worse as β increases, reflecting the grow-
ing importance of the geometry. The self-similarity is
lost at β ≈ 0.7, very close to the theoretical transition
point β′

c = 2/γ between the non- and quasi-geometric
regimes [22]. The curves flatten out with l, implying that
more and more of the clustering in the network is due to
high degree nodes. This is to be expected, as the random
coarse-graining scheme destroys the coupling of the net-
work to the geometry. This leads to networks that are
similar to those generated with the configuration model,
where we know that most of the clustering is due to high
degree nodes [27].
To quantify further how much poorer the results of

the randomized coarse-graining scheme are in comparison
to GR, we measured how well the empirical connection
probability of the renormalized network fits the theoret-
ical one in the S1-model. After obtaining the hidden co-

ordinates, the parameter χij = xβ
ij/(µ̂κiκj)

max(1,β) were
determined for each pair of nodes. These values were
binned logarithmically, and for each bin the proportion
of links versus non-links was calculated to produce the
inferred connection probability p(χ). The results of this
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FIG. 3. (a,b) The flow of the connection probability as a

function of χ = xβ
nm/(µ̂κnκm)max(1,β) under the RGN where

nodes are combined sequentially (a) or randomly (b) along
the circle. The dotted lines give the theoretical curve. (c)
The mean difference between the two previous cases for l = 1
and for three different γ’s. In all cases the networks were
generated with the S1 model with N = 65536 and ⟨k⟩ = 6.

analysis are shown in Fig. 3 where we have used networks
in the quasi-geometric regime with β = 0.8. Fig. 3a shows
the inferred connection probability of the different renor-
malized layers for the standard GR, where geometric in-
formation is used to define the supernodes. In Fig. 3b,
we see the same results but for the case where the nodes
are chosen at random. Clearly, while GR produces self-
similar copies congruent with the S1 connection probabil-
ity, the random procedure does not. This confirms that
in the quasi-geometric regime geometric information is
important even though the geometric coupling is weak.

We plot the average difference between the connec-
tion probabilities of the two schemes at layer l = 1
as a function of the inverse temperature β in Fig. 3c.
To compute this difference, one first samples parameters

χ
(l=1)
ij logarithmically. For each of these values, one finds

the observed connection probability for the two schemes.
One then takes the difference between these cases and
averages this over the sampled distances. Once again,
three different behaviors can be observed. In the geo-
metric regime (β > 1), the difference between the two
methods is large. For β’s in the quasi-geometric regime,
the difference decreases, and it goes to zero in the non-
geometric regime. The transition point between the non-
and quasi-geometric regimes shifts to higher betas when
the heterogeneity of the network is increased, in line with
the theoretical prediction that this transition occurs at
β′
c = 2/γ [22]. The discrepancy between the curves at

β > 1 comes from the fact that not only similarity but
also popularity plays a role in the connection probability.
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FIG. 4. The degree distribution and rescaled average local clustering coefficient as functions of the rescaled degree for (a,b)
the genetic multiplex of the yeast S.cerevisiae, (c,d) the Human protein-protein interaction network and (e,f) the interaction
network of users on the online Q&A site MathOverflow. For this last network, the H2 representations of the (g) original (l = 0)
and (h) renormalized (l = 3) networks are shown. The details of these networks are given in the SM [26].

As this second type of information is used equivalently
in the renormalization procedure regardless of how the
angular coordinates are chosen, the difference between
these two methods can thus be expected to be smaller
when popularity dimensions plays a more important role,
which is the case when the degree distribution is more
heterogeneous, i.e. when γ is smaller.
Now that we have set up the renormalization procedure

β < 1 and shown that geometric information is relevant
in this regime, we are able to study the self-similarity
of real networks that are best described as being weakly
geometric [21]. In Fig. 4e-f the degree distribution and
clustering spectrum of several of those real networks and
their scaled-down replicas are shown. In particular, we
study the genetic multiplex of the nematode worm C.
Elegans (Fig. 4a,b) [28], the human protein-protein in-
teraction network (Fig. 4c,d) [29] and the interaction
network of users on the online Q&A site MathOverflow
(Fig. 4e,f) [30]. The embeddings of these networks in the
quasi-geometric domain were produce with the tool pro-
vided in [21]. Further details about the networks can be
found in Supplementary Information III [26].
In all cases, the curves remain invariant under repeated

application of GR. Only for large l does the degree dis-
tribution tend to a more homogeneous distribution. This
is once again a finite size effect. For the MathOverflow
network, we show the H2 representation of the original
(Fig. 4g) and scaled-down (Fig. 4h) networks. To obtain
the scaled-down replica, GR with r = 2 was performed
thrice, such that the replica was 23 = 8 times smaller
than the original. We report similar results for a wide
range of other networks in the Supplementary Informa-
tion IV [26].

In summary, we have extended the geometric renor-
malization scheme to networks in the weakly geometric
regime. We have shown that also in this regime,
self-similar scaled-down network replicas can be ob-
tained, where self-similarity refers to important network
properties such as the degree distribution and the
clustering spectrum. In the quasi-geometric domain
0.5 ≲ β ≤ 1, one must define supernodes by grouping
consecutive nodes along the S1 circle in order to obtain
self-similarity in the clustering spectrum and in the
connection probability. This underlines the importance
of geometric information for understanding the network
topology even when the geometric coupling is weak.
In constrast, for β ≲ 0.5 it does not matter how
nodes are grouped. This implies that for networks
in this domain, the connectivity is solely determined
by the degree-distribution, making them effectively
non-geometric. Finally, we reveal the scale-invariance
of many real networks identified in Ref. [21] as living
in the quasi-geometric domain of the weak coupling
regime, which can be effectively renormalized using the
extended GR scheme. These results prove once again the
importance of the geometric renormalization approach
to reveal hidden symmetries in real networks.
This work was supported by grant TED2021-129791B-
I00 funded by MCIN/AEI/10.13039/501100011033 and
the “European Union NextGenerationEU/PRTR”;
grant PID2022-137505NB-C22 funded by
MCIN/AEI/10.13039/501100011033; Generalitat de
Catalunya grant number 2021SGR00856. M.B. ac-
knowledges the ICREA Academia award, funded by the
Generalitat de Catalunya.
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S1. SELF-SIMILARITY OF THE CONNECTION PROBABILITY

In this section we show that the connection probability

pij =

(
1 +

(R∆θij)
β

(µ̂κiκj)max (1,β)

)−1

(S1)

is self-similar under renormalization if certain choices are made. In the renormalization procedure described above,
supernodes in layer l + 1 are formed by combining r adjacent nodes from layer l. If any constituent of supernode σ,
denoted by the set S(σ) is connected to any of the constituents of supernode τ they are said to be connected. The
probability of this being the case is given by

p(l+1)
στ = 1−

∏

(i,j)∈P(σ,τ)

(1− p
(l)
ij ), (S2)

i.e. one minus the probability that none of the constituents are connected. Here we have defined P(σ, τ) = S(σ)×S(τ).

Using that p
(l)
ij = 1/(1− x

(l)
ij ) we can rewrite this expression as

p(l+1)
στ = 1− 1

∏
(i,j)∈P(σ,τ)(1 + (x

(l)
ij )

−1)
. (S3)

The denominator of the second term can be expanded as

∏

(i,j)∈P(σ,τ)

(1 + (x
(l)
ij )

−1) = 1 +
∑

(i,j)∈P(σ,τ)

(x
(l)
ij )

−1 +
∑

(i,j)∈P(σ,τ)

(x
(l)
ij )

−1
∑

(s,t)∈P(σ,τ)\(n,m)

(x
(l)
st )

−1 + ... (S4)
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2

We know that x
(l)
ij = (R(l)∆θ

(l)
ij )

β(l)

/(µ̂(l)κ
(l)
i κ

(l)
j )max(1,β(l)) which is proportional to (N (l))max(1,β(l)) ≫ 1. Thus, we

can truncate the expansion at first order. We assume that ∆θ
(l)
ij ≈ ∆θ

(l+1)
στ , the distance between the two supernodes.

This is because the distances between the nodes within a single supernode is generally much smaller than the distance
between nodes in different supernodes. This allows us to rewrite Eq. (S3) as

p(l+1)
στ =


1 +

(
R(l)∆θ

(l+1)
στ

)β(l)

∑
(i,j)∈P(σ,τ)

(
µ̂(l)κ

(l)
i κ

(l)
j

)max(1,β(l))




−1

. (S5)

In order for this to be a proper connection probability in the renormalized layer, taking into account that R(l+1) =
R(l)/r and β(l+1) = β(l) ≡ β, we must demand µ̂(l+1) = µ̂(l)/rmin(1,β). Furthermore, the evolution of the hidden
degrees is as follows

κ(l+1)
σ =


 ∑

i∈S(σ)

(
κ
(l)
i

)max(1,β)




1/max(1,β)

. (S6)

This transformation respects the semi-group property of the renormalization as

κ(l+2)
σ =


 ∑

i∈S(σ)

(κ
(l+1)
i )max(1,β)




1/max(1,β)

=


 ∑

i∈S(σ)

∑

s∈S(i)

(κ(l)
s )max(1,β)




1/max(1,β)

. (S7)

This final double sum is equivalent to a single sum over all r2 nodes in the unrenormalized layer l that make up the
supernode in the layer l + 2.

In the similarity dimension we have slightly more freedom, as we just need to find a definition of ∆θ
(l+1)
σβ that (1)

respects the semi-group property of the renormalization procedure, (2) respects the spherical symmetry of the system
and (3) lies in the range defined by the angular coordinates of the constituent nodes and therefore respects the original
node order. We therefore define

θ(l+1)
σ =

∑
i∈S(σ)(κ

(l)
i )max(1,β)θ

(l)
i∑

i∈S(σ)(κ
(l)
i )max(1,β)

, (S8)

which can been seen as a weighted average. Note that we do not choose the exact definition as given in Ref. [1]
because it introduces a bias for the constituent node with the largest angular coordinate when β > 1.
The definition in Eq. (S8) works well as long as the difference between the largest and smallest coordinate is smaller

than π, but breaks down when this is not the case. If, for example, we try and create a supernode from the coordinates

(κ
(l)
1 , θ

(l)
1 ) = (1, π/4) and (κ

(l)
2 , θ

(l)
2 ) = (1, 7π/4), we end up with (κ(l+1), θ(l+1)) = (21/max(1,β), π). This obviously is

not correct, as the supernode lies on the opposite side of the unit circle from where its constituents were located. As
we normally define supernodes by taking adjacent constituent nodes, starting from the node with the smallest angular
coordinate, we do not run into this problem. However, in the main text we compare the ordered renormalization with
one where the constituent nodes are chosen at random, and thus Eq. (S8) can in principle not be applied. Note that
in this case also the argument used to obtain Eq. (S5) fails, and so we cannot expect the connection probability in the
renormalized layer to be congruent with the S1 model when the angular coordinate is relevant. The generalization of
the renormalized angular coordinate is given by

θ(l+1)
σ = arg



∑

i∈S(σ)(κ
(l)
i )max(1,β)eiθ

(l)
i

∑
i∈S(σ)(κ

(l)
i )max(1,β)


 , (S9)

which can be seen as a weighted circular mean.
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When the spread of the constituent angular coordinates is small, as is the case for GR, it does not matter which

of the two definitions of θ
(l+1)
σ one takes: Let {θ(l)1 , ..., θ

(l)
r } be the set of constituent nodes of a supernode σ in layer

l + 1, sorted in ascending order and where we assume that θ
(l)
r − θ

(l)
1 ≪ 1. Then we know that ∆θ

(l)
i1 ≪ 1 ∀i, which

allows us to approximate Eq. (S9) as

θ(l+1)
σ ≈ arg



eiθ

(l)
1
∑

i∈S(σ) κ
max(1,β)
i

(
1 + i∆θ

(l)
i1

)

∑
i∈S(σ) κ

max(1,β)
i




= arg
(
eiθ

(l)
1

(
1 + i∆θ(l)

))
≈ arg

(
eiθ

(l)
1 ei∆θ(l)

)

= θ
(l)
1 +∆θ(l), (S10)

where in the second step we have defined the weighted average of the angular differences

∆θ(l) =

∑
i∈S(σ) κ

max(1,β)
i

(
θ
(l)
i − θ

(l)
1

)

∑
i∈S(σ) κ

max(1,β)
i

, (S11)

which is assumed to be small. Eq. (S10) can be rewritten to obtain Eq. (S8). We generally choose Eq. (S8) as it
respects the semi-group property explicitly, while Eq. (S9) only does so approximately in the case of small angular
spread of the constituents as only then can one approximate

eiθ
(l+1)
σ ≈

∑
i∈S(σ)(κ

(l)
i )max(1,β)eiθ

(l)
i

∑
i∈S(σ)(κ

(l)
i )max(1,β)

, (S12)

which is necessary for the semi-group property to hold.

The expected degree of a node with hidden degree z = κ(l+1) can be expressed as

k(l+1)(z) =
N (l)

r

ˆ

dz′
ˆ π

0

dθρ(l+1)(z′)
1

1 + (R(l)θ)β

(µ̂(l)zz′)max(1,β)

=
N (l)

r

ˆ

dz′ρ(l+1)(z′)2F1

[
1, 1/β
1 + 1/β

;− (πR(l))β

(µ̂(l)zz′)max(1,β)

]
,

(S13)

where we know that for x → ∞ one has 2F1(1, 1/β, 1 + 1/β,−x) = ((1 − β)x)−1 + (π/β) csc(π/β)x−1/β + O(x−2).
Employing this approximation and using that ⟨κ(l+1)⟩ = rξ⟨κ(l)⟩, it can then be shown that

k(l+1)(κ(l+1)) = rξ−1 ⟨k(l)⟩
⟨κ(l)⟩κ

(l+1). (S14)

We can then take the average over the hidden degree to get

⟨k(l+1)⟩ = rν⟨k(l)⟩, (S15)

where we define ν = 2ξ − 1.

S2. SELF-SIMILARITY OF THE DEGREE DISTRIBUTION

The goal of this section is to find the degree distribution at the r’th level of renormalization. We start by studying
the hidden degree distribution, assuming that in the original network the distribution is given by

ρ(κ) = Nκ−γ , κ0 ≤ κ ≤ κc, (S16)

where N is the normalization constant. To obtain the distribution after renormalization we use Eq. (S6). Note that we
change our method slightly from this point onward. Instead of looking at the l’th layer of the iterative normalization
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procedure where each supernode is constructed with r nodes, we now study only a single normalization step. Note
however that, due to the semi-group property, these two approaches are equivalent as l steps of size r can always be
replaced by a single step of size rl. We first find that the distribution ρ̃(κ̃), where κ̃ = κmax(1,β):

ρ̃(κ̃) = Ñ κ̃−η, κ̃0 ≤ κ̃ ≤ κ̃c, (S17)

where we have defined Ñ = N/max(1, β), κ̃0 = κ
max(1,β)
0 , κ̃c = κ

max(1,β)
c and η = 1 + (γ − 1)/max(1, β). The next

step is to find the distribution ρ̃r(z̃) where z̃ =
∑r

i=1 κ̃i. We first state the result and follow with the proof:

ρ̃r(z̃) =
r∑

n=1

∞∑

q=1

cn,q z̃
n(1−η)−q1[rκ̃0,κ̃c+(r−1)κ̃0](z̃), (S18)

where cn,l are constants. To obtain the distribution of the hidden degrees z in the renormalized layer, we use the fact

that z = z̃1/max(1,β), which leads to

ρr(z) = max(1, β)ρ̃r(z
max(1,β))zmax(1,β)−1. (S19)

Note that for z̃ ≫ 1, the dominant scaling in Eq.(S18) is z̃−η (n = 1, q = 1). Plugging this into Eq.(S19) proves
that the distribution ρr(z) scales as z−γ , which in turn demonstrates the self-similarity of the scaling behavior of
the hidden degree distribution under renormalization. Note that the cut-off in the renormalized layer is given by
(κ̃c + (r − 1)κ̃0)

1/max(1,β), which is approximately κc if κ̃c ≫ (r − 1)κ̃0.
We now prove Eq. (S18) using induction. First, for r = 2, we know that the distribution ρ̃2(z̃), where z̃ = κ̃1 + κ̃2,

is given by the convolution

ρ̃2(z̃) =

ˆ ∞

−∞
dκ̃ρ̃(z̃ − κ̃)ρ̃(κ̃). (S20)

Taking into account the support of ρ̃(κ̃) we can conclude that κ̃0 ≤ z̃ − κ̃ ≤ κ̃c and κ̃0 ≤ κ̃ ≤ κ̃c. We then rewrite
Eq. S20 as

ρ̃2(z̃) =
Ñ 2

z̃2γ−1

[(
B

1− κ̃0
z̃

[
1− η
1− η

]
−B κ̃0

z̃

[
1− η
1− η

])
1[2κ̃0,κ̃c+κ̃0](z̃) +

(
B κ̃c

z̃

[
1− η
1− η

]
−B1− κ̃c

z̃

[
1− η
1− η

])
1[κ̃0+κ̃c,2κ̃c](z̃)

]
.

(S21)

Here, Ba

[
b
c

]
represents the incomplete beta function. We then note that this function can be expanded as

B1−x

[
a
b

]
=

π csc (bπ)

a

( ∞∑

n=0

a(n)

n!
(−x)n

)
×
(
Γ(1 + a)

Γ(a+ b)

∞∑

q=0

[
(b− 1)(q)(−a)(q)

q!Γ(1− b+ q)
xl

]

− axb

Γ(1− b)

∞∑

q=0

[
(−a− b)(q)

q!Γ(1 + b+ q)
(−x)q

])
(S22)

Bx

[
a
b

]
= xa

∞∑

n=0

(1− b)(n)

n!(a+ n)
xn (S23)

when x → 0, where the y(n) represent the falling factorials: y(n) = y(y − 1)(y − 2)...(y − n + 1). In the case that
z̃ ∈ [2κ̃0, κ̃c + κ̃0], z̃/κ̃0 ≪ 1 in the tail of the distribution. Thus, we can apply the expansions given above and show
that the dominant scaling in this regime is ρ̃2(z̃) ∼ z̃−η and that the full behavior is given by Eq. (S18). Crossing
over to the regime z̃ ∈ [κ̃0 + κ̃c, 2κ̃c], we get that 1− κ̃c/z̃ ≪ 1, as least close to the transition. Using once again the
series expansions of the beta functions we obtain that ρ̃2(z) ∼ (1 − κ̃c/z̃)

1−η. This falls of hyperbolically and so we
can take the probability density to be zero here. Therefore, we prove Eq. (S18) for r = 2.
Now, assuming that Eq. (S18) is true for some general r, let us investigate the case for r+ 1. In this case, we start

with the convolution

ρ̃r+1(z̃) =

ˆ z̃−κ̃0

rκ̃0

dκ̃ρ1(z̃ − κ̃)ρr(κ̃)1[(r+1)κ̃0,κ̃c+rκ̃0](z̃)

+

ˆ κ̃c+(r−1)κ̃0

z̃−κ̃c

dκ̃ρ̃1(z̃ − κ̃)ρ̃r(κ̃)1[κ̃c+rκ̃0,2κ̃c+(r−1)κ̃0](z̃), (S24)



5

where have taken into account the respective domains of the two functions ρ̃1 and ρ̃r. The fact that ρ̃r(z̃) can be
expanded into a sum of terms g̃r(z̃;α) ∼ z̃−α, where α ≥ η, implies that ρ̃r+1(z̃) can be expanded into a sum of

integrals Ĩ(z̃;α) evaluating to

Ĩ(z̃;α)= Ñ r z̃1−η−α

[(
B

1− κ̃0
z̃

[
1− α
1− η

]
− B rκ̃0

z̃

[
1− α
1− η

])
1[(r+1)κ̃0,κ̃c+rκ̃0]

+

(
B κ̃c+(r−1)κ̃0

z̃

[
1− α
1− η

]
−B1− κ̃c

z̃

[
1− α
1− η

])
1[κ̃c+rκ̃0,2κ̃c+(r−1)κ̃0]

]
. (S25)

Using the same arguments as before, we can show that ∀α the integral falls off hyperbolically in the second region.
When z̃ ∈ [(r + 1)κ̃0, κ̃c + rκ̃0], it can be shown that the expression can be rewritten in the form of Eq. (S18), where
the dominant scaling for large z̃ is once again ∼ z̃−η. With this we conclude the proof.
Note that this proof is contingent on some assumptions, most notably that rκ̃0 ≪ κ̃c. Of course, for finite κ̃c, there

is always an r for which this assumption breaks down. This has to do with the central limit theorem: For a finite
cut-off κ̃c, the variance of the distribution ρ̃(κ̃) is also finite, and thus the distribution ρ̃r(z̃) necessarily approaches a
Gaussian as r → ∞. In the case of the model we in general assume that κ̃c = κ̃0N

max(1,β)/(γ−1), which is very large
for the network sizes we typically work with, and so one can perform several renormalization steps before one ‘feels’
the effect of the cut-off.

It is known that the degree distribution is related to the distribution of hidden degrees by

Pr(k) =
1

k!

ˆ

dzρ(z)k(z)ke−k(z), (S26)

where k(κ) is the expected degree of a node with hidden degree κ. In the unrenormalized layer one can show that
k(κ) = κ when µ̂ is chosen correctly. For this to be true for in the renormalized layer, however, one would need that
⟨κr⟩ = ⟨kr⟩, which is not generally the case as the scaling exponents determining the flow of these two quantities, ξ
and ν, are not always equal. Using Eq. (S14) and ξ = (ν + 1)/2, one obtains that

kr(κr) = r(ν−1)/2κr (S27)

We now note that we do not know the exact functional form of ρr(κ), at least not for β > 1. To be able to plug in
Eq. (S18), we first need to transform (S26). It can be shown that this integral is equivalent to

Pr(k) =
1

k!

ˆ κ̃c+(r−1)κ̃0

rκ̃0

dz̃
rk(ν−1)/2ρ̃r(z̃)z̃

k
max(1,β)

exp
(
r(ν−1)/2z̃

1
max(1,β)

) . (S28)

Then, combining the previous result with Eq. (S18) and Eq. (S26) one obtains

Pr(k) =
r∑

n=1

∞∑

q=1

cn,qr
k ν−1

2

k!

ˆ κ̃c+(r−1)κ̃0

rκ̃0

dz̃
z̃n(1−η)−q+k/max(1,β)

exp
(
r

ν−1
2 z̃1/max(1,β)

)

=

r∑

n=1

∞∑

q=1

cn,l max(1, β)r
ν−1
2 (max(1,β)(1−q)+n(1−γ))

k!

[
Γ
(
max(1, β)(1− q) + n(1− γ) + k, r

ν−1
2 +1/max(1,β)κ0

)

+ Γ
(
max(1, β)(1− q) + n(1− γ) + k, r

ν−1
2 (κ̃c + (r − 1)κ̃0)

1/max(1,β)
)]

. (S29)

When k ≫ (κ̃c + (r − 1)κ̃0)
1/max(1,β)

, the two gamma functions cancel, meaning that the probability density vanishes.

When r1/max(1,β)κ0 ≪ k ≤ (κ̃c + (r − 1)κ̃0)
1/max(1,β)

, the first term scales as k−γ , whereas the second term falls off
exponentially. This implies that the scaling behavior of the tail of the distribution is preserved under renormalization.
Note that once again for large κc the cut-off does not evolve under renormalization.
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S3. REAL NETWORKS

In this section we show the results of the RG procedure applied to a set of Real Networks living in the weakly
geometric region β < 1. We present here short descriptions of these networks as given in Ref. [2]. The properties of
these networks are shown in Tab. S1.

• Foodweb–Eocene [3]: A reconstructed food web of an ecosystem from the early Eocene (48 million years ago).
Nodes represent taxa and edges represent consumer-resource relations. The original network was directed.

• WordAdjacency–English [4]: A network of word adjacency in English texts. Nodes represent words and two
words are connected if one directly follows the other in texts. The original network was directed.

• WordAdjacency–Japanese [4]: A network of word adjacency in Japanese texts. Nodes represent words and
two words are connected if one directly follows the other in texts. The original network was directed.

• MB–R.norvegicus [5]: A metabolic network of the rat (Ratus norvegicus), extracted from the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG). Nodes represent substances involved in enzymatic reactions and edges
represent reactant-product pairs.

• WikiTalk–Catalan [6]: A network where nodes represents Wikipedia editors for a certain language (in this
case Catalan), and where user i and j are connected if i leaves a message on the talk page of j. The original
network was directed.

• GI–S.cerevisiae [7]: A network based on the Molecular Interaction Search Tool (MIST) for baker’s yeast
(Saccharomyces cerevisiae). Here node represent genes and the edges indicate that the effects of mutations in
one gene can be modified by mutations of another gene.

• GMP–C.elegans [8]: A multiplex network representing different types of genetic interactions for the nematode
worm Caenorhabditis elegans. The layers represent physical, association, co-localization, direct, suppressive and
additive interactions. In this paper we create a monolayer network by treating the different interaction types
equally and removing repeated links. The original network was directed.

• Gnutella [9]: A snapshot of the Gnutella peer-to-peer file sharing network on August 4th 2002. Nodes are
hosts and edges are connections between them. The original network was directed.

• PPI–S.cerevisiae [7]: A network based on the Molecular Interaction Search Tool (MIST) for baker’s yeast
(Saccharomyces cerevisiae). Here node represent genes and the edges indicate that there are physical interactions
between their associated proteins.

• PPI–D.melanogaster [7]: A network based on the Molecular Interaction Search Tool (MIST) for the fruit fly
(Drosophila melanogaster). Here node represent genes and the edges indicate that there are physical interactions
between their associated proteins.

• Transport–London [10]: An multiplex network of the public transportation system in London. Nodes are
London train stations and the links can represent either the underground, overground and DLR connections.
There connections are treated equally as to create a mono-layer network.

• GMP–S.cerevisiae [8]: A multiplex network representing different types of genetic interactions for baker’s
yeast (Saccharomyces cerevisiae). The layers represent physical, association, co-localization, direct, suppressive
and additive interactions. In this paper we create a monolayer network by treating the different interaction
types equally and removing repeated links. The original network was directed.

• Internet-PoP [11]: The Kentucky Datalink network, an internet graph at the Point of Presence (PoP) level.
Nodes are physical network interface points and links physical connections between them.

• PPI–H.sapiens [7]: A network based on the Molecular Interaction Search Tool (MIST) for humans (Homo
sapiens). Here node represent genes and the edges indicate that there are physical interactions between their
associated proteins.

• WikiVote [12]: The network represents the voting process used to select Wikipedia administrators, which
are contributors with access to additional technical features. Nodes represents Wikipedia users and an edge is
created if user i votes on the selections of user j. The original network was directed.

• MathOverflow [13]: An interaction network of users (nodes) on the online Q&A site MathOverflow. An edge
from node i to node j indicates that i responded to an answer by j. The original network was directed.
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TABLE S1. Network properties of several real weakly geometric networks shown. The following abbreviations are used: (MB)
Metabolic, (GI) Genetic Interactions, (GMP) Genetic Multiplex, (PPI) Protein Protein Interactions, (PoP) Point of Presence.

Network Area N ⟨k⟩ kmax c β

Foodweb–Eocene Ecological 700 18.3 192 0.10 β ≈ 0

WordAdjacency–English Language 7377 12.0 2568 0.47 β ≈ 0

WordAdjacency–Japanese Language 2698 5.9 725 0.30 β ≈ 0

MB–R.norvegicus Cell 1590 5.9 498 0.19 β ≈ 0

WikiTalk–Catalan Social 79209 4.6 53234 0.83 β ≈ 0

GI–S.cerevisiae Cell 5933 149 2244 0.17 0.63

GMP–C.elegans Cell 3692 4.1 526 0.11 0.69

Gnutella Technological 10876 7.4 103 0.01 0.73

PPI–S.cerevisiae Cell 7271 45.0 3613 0.37 0.75

PPI–D.melanogaster Cell 11319 23.7 889 0.10 0.84

Transport–London Transportation 369 2.3 7 0.03 0.86

GMP–S.cerevisiae Cell 6567 68.1 3254 0.22 0.88

Internet-PoP Technological 754 2.4 7 0.03 0.90

PPI–H.sapiens Cell 27578 37.9 2883 0.15 0.91

WikiVote Social 7066 28.5 1065 0.21 0.91

MathOverflow Social 13599 10.5 949 0.32 0.99

FIG. S1. Summary of the results of GR for the Foodweb-Eocene network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 50% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.
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FIG. S2. Summary of the results of GR for the WordAdjacency-English network. (a-c) Representation of the embedding for
layers l = 1, 2 and 3 in the hyperbolic plane. The top 10% most geometric edges are shown. The topological properties are

also given: (d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree

class, where c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the
degrees.

FIG. S3. Summary of the results of GR for the WordAdjacency–Japanese network. (a-c) Representation of the embedding for
layers l = 1, 2 and 3 in the hyperbolic plane. The top 50% most geometric edges are shown. The topological properties are

also given: (d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree

class, where c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the
degrees.
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FIG. S4. Summary of the results of GR for the MB–R.norvegicus network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 50% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.

FIG. S5. Summary of the results of GR for the WikiTalk–Catalan network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 1% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.
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FIG. S6. Summary of the results of GR for the GI–S.cerevisiae network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 5% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.

FIG. S7. Summary of the results of GR for the GMP–C.elegans network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 50% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.
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FIG. S8. Summary of the results of GR for the Gnutella network. (a-c) Representation of the embedding for layers l = 1, 2
and 3 in the hyperbolic plane. The top 40% most geometric edges are shown. The topological properties are also given: (d)

the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.

FIG. S9. Summary of the results of GR for the PPI–S.cerevisiae network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 3% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.
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FIG. S10. Summary of the results of GR for the PPI–D.melanogaster network. (a-c) Representation of the embedding for
layers l = 1, 2 and 3 in the hyperbolic plane. The top 20% most geometric edges are shown. The topological properties are

also given: (d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree

class, where c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the
degrees.

FIG. S11. Summary of the results of GR for the Transport–London network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 100% most geometric edges are shown. The topological properties are also

given: (d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree

class, where c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the
degrees.
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FIG. S12. Summary of the results of GR for the GMP–S.cerevisiae network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 5% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.

FIG. S13. Summary of the results of GR for the Internet-PoP network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 100% most geometric edges are shown. The topological properties are also

given: (d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree

class, where c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the
degrees.



14

FIG. S14. Summary of the results of GR for the PPI–H.sapiens network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 5% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.

FIG. S15. Summary of the results of GR for the WikiVote network. (a-c) Representation of the embedding for layers l = 1, 2
and 3 in the hyperbolic plane. The top 10% most geometric edges are shown. The topological properties are also given: (d)

the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.
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FIG. S16. Summary of the results of GR for the MathOverflow network. (a-c) Representation of the embedding for layers
l = 1, 2 and 3 in the hyperbolic plane. The top 5% most geometric edges are shown. The topological properties are also given:

(d) the degree distribution, where k
(l)
res = k(l)/⟨k(l)⟩, (e) the rescaled average local clustering coefficient per degree class, where

c
(l)
res(k

(l)) = c(l)(k(l))/c(l) and finally (f) the degree-degree correlations per degree class. In all cases we log-bin the degrees.
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