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1 A Continuous Time Random Walk (CTRW) Model of Player
Progression and Retention

Suppose we have a simple linear game where players can access the different levels one by one.
The main goal of this model is to evaluate the survival probability of the game S(t), that is, the
probability that a given player keeps playing the game after some time t, counted from the time the
player started playing the game for the first time. In our approach, time is treated as continuous,
players are considered as identical and independent, and always progress forward in an increasing
manner[1]. In addition, the assumptions that we make are as follows:

1. When a player reaches a new level n, it takes him/her a random time to pass it. This time is
controlled by the probability density function (pdf) ψpn(t) that, in general, will depend on the
particular level n.

2. On the other hand, being at level n, the player can get bored or frustrated and abandon the
game after another random time that follows the pdf ψan(t), also dependent on the level n.

3. To simplify the model, we assume that these two random times are statistically independent.
This means that in order to pass a level, the random time given by the pdf ψpn has to be smaller
than the time given by ψan.

The main quantity of interest is the probability that the player is at level n at time t, Pn(t). The
survival probability of the game can be computed from this distribution as

S(t) =

∞∑
n=1

Pn(t). (S1)

1



Supplementary Information for “The Physics of Fun”

The probability Pn(t) satisfies the following equation [2]

Pn(t) =

∫ t

0

hn(τ)Ψp
n(t− τ)Ψa

n(t− τ)dτ, for n ≥ 1 (S2)

where Ψp
n(t) and Ψa

n(t) are the corresponding survival probabilities, that is Ψp
n(t) =

∫∞
t
ψpn(τ)dτ

and Ψa
n(t) =

∫∞
t
ψan(τ)dτ , representing the probability that the time required to pass or abandon,

respectively at level n is larger than t. In turn, hn(t) is the probability that the player has reached
level n between t and t + dt, with the initial condition h1(t) = δ(t). Eq. (S2) thus represents the
probability that a jump was made to level n at time τ ≤ t and no further transitions to the next
level or abandons took place. The function hn(t) satisfies the following self-consistent equation

hn(t) =

∫ t

0

hn−1(τ)ψpn−1(t− τ)Ψa
n−1(t− τ)dτ, for n ≥ 2. (S3)

Notice that the integrals in the last two equations are convolutions, meaning that they can be solved
using Laplace transforms. Denoting by ĥn(s) the Laplace transform of function hn(t), we can solve
it as

ĥn(s) =

n−1∏
i=1

L{ψpi Ψa
i } (s) for n ≥ 2 (S4)

where L{ψpi Ψa
i } (s) denotes the Laplace transform of the product of functions ψpi (t) and Ψa

i (t).
Using this expression, we can finally write a general formula for the Laplace transform of the survival
probability

Ŝ(s) = L{Ψp
1Ψa

1} (s) +

∞∑
n=2

L{Ψp
nΨa

n} (s)

n−1∏
i=1

L{ψpi Ψa
i } (s). (S5)

It is quite easy to check the consistency of this expression by considering the case when the player
never abandon the game and so Ψa

n(t) = 1 ∀n. In such case, the Laplace transform Ŝ(s) = 1/s and,
thus, S(t) = 1.

To make further progress, we need to make some assumptions about the particular form of the
probability density functions at each level. We first consider a non-homogeneous Poisson distribution
for the abandon time, that is,

Ψa
n(t) = e−ka(n)t (S6)

where ka(n) is the abandon rate, that in general depends on the particular level n. Thanks to the
properties of the Laplace transform, in this case, the Laplace transform of the product of functions
that appears in Eq. (S5) is just the Laplace transform of the distributions ψpn(t) but with the
argument shifted by a factor ka(n). Using this property and after some algebra, we can write

Ŝ(s) =
1

s+ ka(1)
+

∞∑
n=1

ka(n)− ka(n+ 1)

[s+ ka(n)][s+ ka(n+ 1)]

n∏
i=1

ψ̂pi (s+ ka(i)). (S7)

Notice that if the abandon rates are independent of the levels, then ka(n) = ka and the survival
probability is just S(t) = e−kat, independently of the distributions ψpn(t). This is easy to understand
as in this case the abandon process is a simple homogeneous Poisson process and, thus, independent
of the particular levels the player has achieved. Equation (S7) is also interesting because it tells us
that in order to have a non trivial result, it is necessary that there is a dependence of the abandon
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rate on the different levels. The equation is also interesting because by setting s = 0, we obtain a
closed formula for the average survival time t̄, which reads

t̄ =
1

ka(1)
+

∞∑
n=1

ka(n)− ka(n+ 1)

ka(n)ka(n+ 1)

n∏
i=1

ψ̂pi (ka(i)) (S8)

which gives us the contribution of each individual level to the overall average survival time of the
game. An interesting property made evident by Eq. (S8) is that flat levels do not contribute to the
average survival time. By flat levels we mean sequences of levels with constant abandon rates and so
ka(n+ 1) ≈ ka(n). That is, a long sequence of similar levels will never increase the average lifespan
of players in the game.

2 Independence of the abandon and pass times

The previous CTRW model for player progression and churn relies on two main inputs: the prob-
ability density distributions of the pass and abandon times, ψpn(t) and ψan(t). For convenience and
simplicity, we have assumed that both the pass and abandon times are exponentially distributed,
i.e.

ψpn(t) =
1

t̄p(n)
e−t/t̄p(n) (S9)

and

ψan(t) =
1

t̄a(n)
e−t/t̄a(n) (S10)

where t̄p(n) and t̄a(n) are the average time to pass or abandon at level n, respectively. In this case,
the average times to pass or abandon at level n are just the inverse of the pass and abandon rates,
specifically

kp(n) = 1/t̄p(n) (S11)

ka(n) = 1/t̄a(n). (S12)

The main parameters of the model, namely the average times to pass, t̄p(n), or abandon, t̄a(n), each
level n, can be directly measured from the datasets in terms of the probability to churn at level n,
pc(n), and the empirical time to pass level n, t̄p

emp
, as explained in the methods section. Quite

interestingly, these empirical measures provide a strong empirical evidence in favor of our model.
We first notice that t̄p

emp
and pc(n) are independent empirical measures. As such, one could have

chosen to model the evolution of this process starting directly with these two functions. However, as
we show below, both measures are strongly correlated. Interestingly, our CTRW model provides a
natural explanation for such correlations. The probability to churn at a given level pc(n) is typically
small, implying that in general we can approximate Eq. (2) as

pc(n) ≈ t̄p(n)

t̄a(n)
and t̄p

emp ≈ t̄p(n) (S13)

and, therefore, pc(n) and t̄p
emp

should be positively correlated. Figure S1 shows such correlations
for the Candy Crush Saga dataset. On the other hand, abandon and pass times are assumed to be
independent. The validity of this assumption can be tested by analyzing the correlation between
both times in the dataset. Fig. S2 shows the results of a detrended fluctuation analysis of the data
in Fig. 2, demonstrating that abandon and pass times are indeed truly uncorrelated.
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Figure S1: Left: Scatter plot showing the detrended correlation between churn probabilities and the
average number of gameplays required to pass a particular level for the Candy Crush Saga dataset
shown in Fig. 2 of the main text. The orange line indicates the direct proportionality with slope
1. Right: Snapshot of churn probabilities and average number of gameplays to pass a given level
as a function of the level. The similarities in both lines provide a clear evidence of the correlation
between them.

Figure S2: A detrended fluctuation analysis of the data in Fig. 2, indeed demonstrates that abandon
and pass times are truly uncorrelated.
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3 Verification of the exponential behavior of the abandon
and pass time distributions

From the dataset, one cannot measure directly the probability distribution function of abandon,
ψan(t), and pass times, ψpn(t) of a specific level. This is due to the fact that abandon and pass times
are unconditioned random processes. That is, ψpn (t) accounts for the distribution of pass times at
level n if players were not allowed to quit the game, which is a condition that is not meet in a real
dataset. Similarly, ψan (t) is the distribution of abandon times at level n if players were not allowed to
quit the game. Instead, the distributions that we can observe directly are the empiric distribution
of pass and abandon times. These distributions can be simply obtained as the normalized histogram
of the attempts required to pass or abandon a specific level, and are mathematically given by

ψ̄pn (t) =
ψpn (t) Ψa

n (t)∫∞
0
ψpn (t) Ψa

n (t)
(S14)

ψ̄an (t) =
ψan (t) Ψp

n (t)∫∞
0
ψan (t) Ψp

n (t)
(S15)

The right hand side of the previous equations represents the distribution of pass times conditioned
to the fact that the player has not yet churned, and the distribution of abandon times conditioned
to the fact that the player has not yet passed level n at time t, respectively. In the case that the
unconditional probabilities are exponentially distributed as in Eqs. (S9) and (S10), it is easy to show
that the Complementary Cumulative Distribution Function (CCDF) of the empiric distributions of
pass and abandon times is just given by

Ψ̄p
n (t) = Ψ̄a

n (t) = e−t/t̄
emp(n) (S16)

where t̄emp(n) = t̄p(n) + t̄a(n). Fig. S3 represents the CCDF for different levels of Blossom Blast
Saga, plotted as a function of the number of attempts divided by the corresponding empiric mean
time.

The CCDF distribution for all levels nicely collapses in a single master curve that is very well
approximated by the predicted exponential behavior, demonstrating that, to a good approximation,
the distribution of abandon and pass times are indeed exponential.
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Figure S3: Complementary Cumulative Distribution Function (CCDF) of the pass (left) and abandon
(right) times, for randomly selected levels of the Blossom Blast Saga game, plotted as a function
of the number of attempts divided by the corresponding empiric pass and abandon time. The red
line represents in both cases, the expected behavior if the abandon and pass times are exponentially
distributed. Data corresponds to a cohort of 4,568,124 players with install dates from 1-1-2016 to
31-1-2016 in all platforms, followed for two years.

4 “Universality” of the power-law dependence of the aban-
don times

We have measured from different datasets the abandon and pass times of each individual level for
players of different continents, playing using a different platform, and that have installed the game
and are playing at different periods of time intervals. In all cases, for each game we obtained
almost identical average pass times (not shown) and a consistent power-law behavior of the average
abandon times with very similar exponents (see Fig. S4). This is a clear indication of the “universal”
power-law behavior of the engagement in this fun activity.
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Figure S4: Average abandon times measured at each level of the game Candy Crush Soda Saga from
all players in the period 1-06-2016 to 31-07-2016. The data has been binned and plotted in double
logarithmic scale. Left: Abandon time measured for players segmented according to their continent.
Middle: Abandon time measured for players using Android or OS as platform. Right: Abandon
time measured for different time periods, corresponding to June and October 2016. In all cases, a
clear power-law behavior is observed.

5 Finite size effects

The estimation of average abandon and pass times are affected by the length of the dataset, that
is, the time span during which we follow our cohort of players. This is so because empirically we
consider that a player has abandoned the game at his/her last observed gameplay. However, if we
increase the observation time window, some players may be still active in the game even thought
they were considered as non-active with the smallest time window. This affects the estimation of
pc(n) and, thus, of t̄p(n) and t̄a(n). These effects are more evident in Fig. S5 comparing how the
number of alive players after a given number of gameplays or levels, and the abandon and pass times
change with the period of time used in their evaluation. Whereas the pass times seem to be quite
stable, the tail of the abandon times is strongly affected by data-censorship due to the finite time
window of analysis. However, as the time window increases, we observe a clear collapse towards a
clean power law behavior.
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Figure S5: Illustration of the finite time window effects. The plots represent the change in the
fraction of players still active in the game after a total number of gameplays (a) or levels (b), the
mean abandon (c) and pass times (d), for Papa Pear Saga dataset on the Facebook interface of a
week cohort of users with installation date from 11/10/2013 to 18/10/2013 measured using different
intervals of real time activity, spanning from 2 to 24 months. For short time windows, most players
have not had the time to play high levels and this leads to a clear cut-off in the survival curves and
a plateau in the observed abandon times.

6 Phase transition

The model undergoes a phase transition between a phase where all players eventually quit the game
and a phase where a finite fraction of players never abandon the game. The probability of a player
to be still playing at level n is simply the probability of not having churned in any level below n,
that is,

S(n) =

n∏
i=1

(1− pc(i)). (S17)
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For all levels, pc(n) is always a small number and, therefore, we can approximate this expression as

S(n) ≈ e−
∑n
i=1 pc(i) ≈ e−

∫ n
i=1

pc(i)di (S18)

where in the last approximation we have taken the continuum approximation. Using Eq. (S13) and
assuming that t̄a(n) = anα and t̄p(n) = bnβ , S(n) can be expressed as

S(n) ≈ e− ba
∫ n
1
iβ−αdi =


e−

b
a(β−α+1)

(nβ−α+1−1) α 6= 1 + β

1
nb/a

α = 1 + β

. (S19)

When α < 1 + β, the limit limn→∞ S(n) = 0, which implies that all players eventually abandon the
game. However, when α > αc = 1 + β, the survival probability S(n) converges to a constant value.
Therefore, in this case, there is finite probability that a player never abandon the game S∞ given by

S∞ = e−
b

a(α−αc) . (S20)

Notice that S∞ and all its derivatives of any order vanishes at α = αc (evaluated from the right)
so that the phase transition is of infinite order. When α > αc = 1 + β, the survival probability of
players with finite lifespan can be evaluated as

Sfin(n) =
S(n)− S∞

1− S∞
, (S21)

that, for n� 1 behaves as Sfin(n) ∼ nαc−α.
The interpretation is then as follows: for α� αc players’ lifespans are short. When α ≈ αc from

below, the average lifespan grows and diverges right at the critical point, even though all players
eventually abandon the game. Above the critical point α > αc, there is a fraction of players that
never abandon the game, and those that do abandon the game follow a power law distribution with
exponent α − αc + 1. When α � αc, players either stay in the game forever or have a very short
lifespan, abandoning the game at very low levels.
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