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S.I. CONTROLLING THE RECIPROCITY IN RANDOM DIRECTED NETWORKS

We consider a general random directed networks model in which pij is the probability for a directed link to exist
from node i to node j. We denote the number of nodes with N . To control the level of reciprocity, our approach
focuses on each pair of directed links between two nodes and defines the four following symmetrical probabilities

Pij(aij = 0, aji = 0) (none of the two possible directed links exist)

Pij(aij = 1, aji = 0) (the link from node i to node j exists but the other does not)

Pij(aij = 0, aji = 1) (the link from node j to node i exists but the other does not)

Pij(aij = 1, aji = 1) (both directed links exists)

with 1 ≤ i < j ≤ N and where aij is 1 if there is a directed link from node i to node j, and 0 otherwise. These four
joint probabilities are normalized

Pij(aij = 0,aji = 0) + Pij(aij = 1, aji = 0) + Pij(aij = 0, aji = 1) + Pij(aij = 1, aji = 1) = 1 , (S1)

and their marginals must be coherent with the random directed network model

Pij(aij = 1, aji = 0) + Pij(aij = 1, aji = 1) = pij , (S2a)

Pij(aij = 0, aji = 1) + Pij(aij = 1, aji = 1) = pij . (S2b)

To connect the probabiilities Pij(aij , aji) with the reciprocity in the network ensemble defined by the model, we
look at the following correlation coefficient

ρij =
〈aijaji〉 − 〈aij〉〈aji〉√(

〈a2
ij〉 − 〈aij〉2

) (
〈a2
ji〉 − 〈aji〉2

) =
Pij(1, 1)− pijpji√

pij(1− pij)pji(1− pji)
. (S3)

for each pair (i, j) with 1 ≤ i < j ≤ N , and where 〈·〉 corresponds to an average over the network ensemble. A closed
form for Pij(1, 1) in terms of pij and pji can be obtained by combining Eqs. (S2)–(S3) alongside the requirement that
each of the four joint probabilities Pij(aij , aji) is bounded in [0, 1]:

1. From Eq. (S3), we can isolate

Pij(aij = 1, aji = 1) = pijpji + ρij

√
pij(1− pij)pji(1− pji) , (S4)

which will be bounded in [0, 1] if

− pijpji√
pij(1− pij)pji(1− pji)

≤ ρij ≤
1− pijpji√

pij(1− pij)pji(1− pji)
. (S5)

2. Combining Eqs. (S2a) and (S4), we can isolate

Pij(aij = 1, aji = 0) = pij − P (aij = 1, aji = 1) = pij(1− pji)− ρij
√
pij(1− pij)pji(1− pji) (S6)

which will be bounded in [0, 1] if

pij(1− pji)− 1√
pij(1− pij)pji(1− pji)

≤ ρij ≤
pij(1− pji)√

pij(1− pij)pji(1− pji)
. (S7)

3. Combining Eqs. (S2b) and (S4), we can isolate

Pij(aij = 0, aji = 1) = pji − Pij(aij = 1, aji = 1) = pji(1− pij)− ρij
√
pij(1− pij)pji(1− pji) (S8)

which will be bounded in [0, 1] if

pji(1− pij)− 1√
pij(1− pij)pji(1− pji)

≤ ρij ≤
pji(1− pij)√

pij(1− pij)pji(1− pji)
. (S9)
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4. Combining Eqs. (S1), (S4), (S6) and (S8), we can isolate

Pij(aij = 0, aji = 0) = 1− Pij(aij = 1, aji = 0)− Pij(aij = 0, aji = 1)− Pij(aij = 1, aji = 1)

= (1− pji)(1− pij) + ρij

√
pij(1− pij)pji(1− pji) (S10)

which will be bounded in [0, 1] if

− (1− pji)(1− pij)√
pij(1− pij)pji(1− pji)

≤ ρij ≤
1− (1− pji)(1− pij)√
pij(1− pij)pji(1− pji)

. (S11)

The lower and upper bounds for ρij are therefore

ρmin
ij =

1√
pij(1− pij)pji(1− pji)

max

{
− pijpji, pij(1− pji)− 1, pji(1− pij)− 1, −(1− pji)(1− pij)

}

=


− pijpji√

pij(1− pij)pji(1− pji)
if pij + pji < 1

− (1− pji)(1− pij)√
pij(1− pij)pji(1− pji)

if pij + pji > 1
(S12)

and

ρmax
ij =

1√
pij(1− pij)pji(1− pji)

min

{
1− pijpji, pij(1− pji), pji(1− pij), 1− (1− pji)(1− pij)

}

=


pij(1− pji)√

pij(1− pij)pji(1− pji)
if pij < pji

pji(1− pij)√
pij(1− pij)pji(1− pji)

if pij > pji .
(S13)

To control the level of reciprocity, we introduce a parameter ν ∈ [−1, 1] controlling ρij such that ρmin
ij ≤ ρij ≤ ρmax

ij

ρij =

{
|ν|ρmin

ij if − 1 ≤ ν ≤ 0

|ν|ρmax
ij if 0 ≤ ν ≤ 1

. (S14)

Substituting Eq. (S14) into Eq. (S4) allows us to isolate

Pij(aij = 1, aji = 1) =


(1 + ν)pijpji − ν(pij + pji − 1)H(pij + pji − 1) −1 ≤ ν ≤ 0

(1− ν)pijpji + νmin
{
pij , pji

}
0 ≤ ν ≤ 1

, (S15)

where H(·) is the Heaviside step function. This last equation alongside Eqs. (S1) and (S2) complete the approach for
controlling reciprocity, whose level is tuned by the parameter ν.
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S.II. ANALYSIS OF THE DIRECTED-RECIPROCAL S1 MODEL

A. Description of the model

We consider N nodes positioned on a circle of radius R = N/2π, thus setting the density of nodes to 1 without
loss of generality. Each node i is independently and identically assigned an angular position θi and a pair of hidden
degrees, κ−i and κ+

i which, as shown below, are related to their in- and out-degree, respectively. The angular positions
are scattered on the circle according to the uniform probability density function (pdf)

ϕ(θ) =
1

2π
. (S16)

The hidden degrees are also assigned randomly according to the joint pdf ρ(κ−, κ+), whose only constraint is∫∫
κ−ρ(κ−, κ+)dκ−dκ+ = 〈κ−〉 ≡ 〈κ〉 (S17a)∫∫
κ+ρ(κ−, κ+)dκ−dκ+ = 〈κ+〉 ≡ 〈κ〉 . (S17b)

A directed link exists from node i to node j with probability

P (aij = 1|κ+
i , κ

−
j ,∆θij) =

1

1 + χβij
with χij =

R∆θij

µκ+
i κ
−
j

=
N∆θij

2πµκ+
i κ
−
j

(S18)

where ∆θij = ∆θji = π − |π − |θi − θj || is the minimal angular distance between nodes i and j, and where µ > 0 and
β > 1 are parameters of the model. Note that we will omit writing explicitly the dependency over β, µ and N for
brevity. Note also that ϕ(θ) = 1

2π implies that the pdf for ∆θij is simply 1/π.

Two connection events may either be independent or conditionally independent. To see this, let us consider the
following two entries of the adjacency matrix aij and alk with the associated probabilities of connection

P (aij = 1|κ+
i , κ

−
j ,∆θij) =

1

1 +

[
N∆θij

2πµκ+
i κ
−
j

]β , and P (alk = 1|κ+
l , κ

−
k ,∆θlk) =

1

1 +
[

N∆θlk
2πµκ+

l κ
−
k

]β ,

where we assume that i 6= j and l 6= k (i.e., no self loops). We distinguish several scenarios:

1. If i = l and j = k, then the two connection events are trivially the same.

2. If i = l and j 6= k (j = k and i 6= l), then the two links are outgoing (incoming) links from (on) the same node
i (j) and both depend on the parameter κ+

i (κ−j ). They are therefore conditionally independent.

3. If i = k and j 6= l (j = l and i 6= k) then one link is outgoing from node i (j) and the other is incoming to node
i (j). The two connection events will conditionally independent if and only if κout

i and κin
i (κout

j and κin
j ) are

correlated. Otherwise, the two connection events are independent.

4. If i = k and j = l, then the two links are in opposite direction between the same two nodes. Both connection
events depend on the angular separation ∆θij between the two nodes, and are therefore conditionally indepen-
dent. The two connection events could be even further correlated if κout

i and κin
i (or equivalently κout

j and κin
j )

are also correlated.

5. If i, j, l and k all take distinct values, then the two connection events are independent.

B. Out-degree of nodes

Let us first consider N nodes, each of which has been assigned an angular position θ, a hidden in-degree κ− and
a hidden out-degree κ+. The sequence of angular positions, noted θ ≡ {θ1, . . . , θN} is distributed according to the

pdf
∏N
i=1 ϕ(θi) = (2π)−N , and the hidden degrees sequence, noted κ ≡ {κ−1 , κ+

1 , . . . , κ
−
N , κ

+
N} is distributed according
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to the pdf
∏N
i=1 ρ(κ−i , κ

+
i ). The connection probability given by Eq. (S18) alongside the sequences θ and κ define a

random network ensemble in which node i has a out-degree equal to k+
i with probability P+

i (k+
i |θ,κ). The associated

probability generating function (pgf) is defined as

H+
i (z|κ,θ) =

N−1∑
k+
i =0

P+
i (k+

i |θ,κ)zk
+
i =

N∏
j=1
j 6=i

[
1− P (aij = 1|κ+

i , κ
−
j ,∆θij) + zP (aij = 1|κ+

i , κ
−
j ,∆θij)

]
, (S19)

where we used the fact that the existence of each link is conditionally independent from the existence of the others (i.e.
they are independent events given the hidden variables θi and κ+

i ). General expressions for the expected out-degree
of node i, its variance and for the ensemble average out-degree are respectively

〈
k+
i

∣∣κ,θ〉 =
∂H+

i (z|κ,θ)

∂z

∣∣∣∣
z=1

=

N∑
j=1
j 6=i

P (aij = 1|κ+
i , κ

−
j ,∆θij) , (S20)

Var
[
k+
i

∣∣κ,θ] =
∂2H+

i (z|κ,θ)

∂z2

∣∣∣∣
z=1

+
∂H+

i (z|κ,θ)

∂z

∣∣∣∣
z=1

−
[
∂H+

i (z|κ,θ)

∂z

∣∣∣∣
z=1

]2

=

N∑
j=1
j 6=i

P (aij = 1|κ+
i , κ

−
j ,∆θij)[1− P (aij = 1|κ+

i , κ
−
j ,∆θij)] , (S21)

and

〈
k+
∣∣κ,θ〉 =

1

N

N∑
i=1

〈
k+
i

∣∣κ,θ〉 =
1

N

N∑
i=1

N∑
j=1
j 6=i

P (aij = 1|κ+
i , κ

−
j ,∆θij) . (S22)

Let us now zoom out of the random network ensemble defined by specific sequences θ and κ to focus instead on
the random network ensemble defined by the pdfs ϕ(θ) and ρ(κ−, κ+) (i.e. any sequences θ of length N and κ of
length 2N drawn from their respective pdf). Averaging over all angular positions (or, equivalently, over all angular
distances), the expected probability for a link to exist from node i to node j in the network ensemble becomes

〈
aij
∣∣κ+
i , κ

−
j

〉
=

1

π

∫ π

0

P (aij = 1|κ+
i , κ

−
j ,∆θij)d∆θij

=
1

π

∫ π

0

1

1 + χβij
d∆θij

=
2µκ+

i κ
−
j

N

∫ N

2µκ
+
i
κ
−
j

0

1

1 + χβij
dχij

= 2F1

1,
1

β
; 1 +

1

β
;−
[

N

2µκ+
i κ
−
j

]β (S23a)

'
2πµκ+

i κ
−
j

βN sin(π/β)

=
κ+
i κ
−
j

N〈κ〉 , (S23b)

where ' denotes an approximation that becomes exact in the limit N/(κ+
i κ
−
j )→∞ [see Eqs. (S95) and (S104)], and

where we set µ = β sin(π/β)
2π〈κ〉 in the last equality. Averaging Eq. (S19) over every possible sequence θ and κ\{κ+

i } then
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yields [note that H+
i (z|κ,θ) does not depend on κ−i ]

H+
i (z|κ+

i ) =

∫
· · ·
∫
H+
i (z|κ,θ)

N∏
j=1
j 6=i

1

π
d∆θijρ(κ−j , κ

+
j )dκ−j dκ

+
j

=

N∏
j=1
j 6=i

[ ∫∫∫ [
1− P (aij = 1|κ+

i , κ
−
j ,∆θij)

+ zP (aij = 1|κ+
i , κ

−
j ,∆θij)

] 1

π
d∆θijρ(κ−j , κ

+
j )dκ−j dκ

+
j

]
=

N∏
j=1
j 6=i

[
1−

〈
ai•
∣∣κ+
i

〉
+ z

〈
ai•
∣∣κ+
i

〉 ]

=
[
1−

〈
ai•
∣∣κ+
i

〉
+ z

〈
ai•
∣∣κ+
i

〉 ]N−1

, (S24)

where

〈
ai•
∣∣κ+
i

〉
=

∫∫ 〈
aij
∣∣κ+
i , κ

−
j

〉
ρ(κ−j , κ

+
j )dκ−j dκ

+
j '

2πµ〈κ〉κ+
i

βN sin(π/β)
=
κ+
i

N
(S25)

is the average probability for the existence of any outgoing link from node i. From Eq. (S24), we conclude that the
out-degree of node i in the random networks ensemble will be distributed according to a binomial distribution with
average

〈
k+
i

∣∣κ+
i

〉
= (N − 1)

〈
ai•
∣∣κ+
i

〉
' 2πµ〈κ〉κ+

i

β sin(π/β)
= κ+

i , (S26)

and variance

Var
[
k+
i

∣∣κ+
i

]
= (N − 1)

〈
ai•
∣∣κ+
i

〉 (
1−

〈
ai•
∣∣κ+
i

〉)
' 2πµ〈κ〉κ+

i

β sin(π/β)
= κ+

i . (S27)

Finally, the average out-degree in the ensemble of random networks is

〈
k+
〉

=

∫∫ 〈
k+
i

∣∣κ+
i

〉
ρ(κ−i , κ

+
i )dκ−i dκ

+
i '

2πµ〈κ〉2
β sin(π/β)

= 〈κ〉 . (S28)

As N/(κ+κ−) → ∞, the relative fluctuations around the expected out-degree,
√

Var
[
k+
i

∣∣κ+
i

]
/
〈
k+
i

∣∣κ+
i

〉
, will fall as

1/
√
κ+
i and will become negligible for high out-degree nodes. The binomial distribution obtained in Eq. (S24) can

therefore be approximated by a Poisson distribution in this limit

H+
i (z|κ+

i ) =

N−1∑
k+
i =0

P+
i (k+

i |κ+
i )zk

+
i '

[
1 + (z − 1)

〈
ai•
∣∣κ+
i

〉 ]N−1

=
[
1 + (z − 1)

κ+
i

N

]N−1

'
∞∑

k+
i =0

[κ+
i ]k

+
i e−κ

+
i

k+
i !

zk
+
i ,

(S29)

where we identify

P+
i (k+

i |κ+
i ) ' [κ+

i ]k
+
i e−κ

+
i

k+
i !

(S30)

as the probability for node i with hidden out-degree κ+
i to have a degree equal to k+

i .
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FIG. S1. Validation of Eqs. (S26), (S27), (S32) and (S33) using numerical simulations. Both κ− and κ+ were
independently and identically drawn from the pdf ρ(κ) ∝ κ−2.5 with 5 < κ < 100. Symbols show

〈
k−

∣∣κ−〉 and
〈
k+

∣∣κ+
〉

estimated from 100 random synthetic networks with N = 25000. Only a fraction of the symbols are shown to avoid cluttering
the plot. Error bars show the estimated 95% confidence interval.

C. In-degree of nodes

Repeating the same steps from the previous section yields an expression similar to Eq. (S25) for the average
probability for the existence of any incoming link into node i〈

a•i
∣∣κ−i 〉 =

∫∫ 〈
aji
∣∣κ+
j , κ

−
i

〉
ρ(κ−j , κ

+
j )dκ−j dκ

+
j '

2πµ〈κ〉κ−i
βN sin(π/β)

=
κ−i
N

(S31)

an expression similar to Eq. (S26) for the expected in-degree of nodes〈
k−i
∣∣κ−i 〉 ' 2πµ〈κ〉κ−i

β sin(π/β)
= κ−i , (S32)

and variance

Var
[
k−i
∣∣κ−i ] ' 2πµ〈κ〉κ−i

β sin(π/β)
= κ−i , (S33)

as well as an expression similar to Eq. (S28) for the ensemble average in-degree〈
k−
〉
' 2πµ〈κ〉2
β sin(π/β)

= 〈κ〉 . (S34)

We also find that the probability for node i with hidden in-degree κ−i to have a degree equal to k−i to be

P−i (k−i |κ−i ) ' [κ−i ]k
−
i e−κ

−
i

k−i !
, (S35)

similarly to Eq. (S30).

D. Joint in-/out-degree distribution

Since the existence of links is conditionally independent given the values of the hidden in- and out-degrees, the joint
in-/out-degree distribution is

P (k−, k+) =

∫∫
P−(k−|κ−)P+(k+|κ+)ρ(κ−, κ+)dκ−dκ+

'
∫∫

[κ−]k
−

e−κ
−

k−!

[κ+]k
+

e−κ
+

k+!
ρ(κ−, κ+)dκ−dκ+ . (S36)
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Hence, the in-degree and out-degree distributions are prescribed by their corresponding marginal pdf of ρ(κ−, κ+) as

P−(k−) =

∞∑
k+=0

P (k−, k+) '
∫

e−κ
−

[κ−]k
−

k−!

[∫
ρ(κ−, κ+)dκ+

]
dκ− (S37a)

P+(k+) =

∞∑
k−=0

P (k−, k+) '
∫

e−κ
+

[κ+]k
+

k+!

[∫
ρ(κ−, κ+)dκ−

]
dκ+ , (S37b)

and the correlations between k− and k+ are governed by the correlations between κ− and κ+ encoded in ρ(k−, κ+).

E. Reciprocal degree of nodes

Let us denote the probability for a reciprocal link to exist between nodes i and j by

P (aij = 1, aji = 1|κ−i , κ+
i , κ

−
j , κ

+
j ,∆θij) , (S38)

with the additional assumption that this connection probability is symmetrical, i.e.

P (aij = 1, aji = 1|κ−i , κ+
i , κ

−
j , κ

+
j ,∆θij) = P (aji = 1, aij = 1|κ−j , κ+

j , κ
−
i , κ

+
i ,∆θji) . (S39)

Following similar steps to that in Sec. S.II B, we define the pgf associated with the reciprocal degree of node i given
the sequences θ and κ as

H↔i (z|κ,θ) =

N−1∑
k↔i =0

P↔i (k↔i |θ,κ)zk
↔
i

=

N∏
j=1
j 6=i

[
1− P (aij = 1, aji = 1|κ−i , κ+

i , κ
−
j , κ

+
j ,∆θij) + zP (aij = 1, aji = 1|κ−i , κ+

i , κ
−
j , κ

+
j ,∆θij)

]
. (S40)

Hence, general expressions for the expected reciprocal degree of node i and for the ensemble average reciprocal degree
are respectively

〈k↔i |κ,θ〉 =
∂H↔i (z|κ,θ)

∂z

∣∣∣∣
z=1

=
N∑
j=1
j 6=i

P (aij = 1, aji = 1|κ−i , κ+
i , κ

−
j , κ

+
j ,∆θij) , (S41)

and

〈k↔|κ,θ〉 =
1

N

N∑
i=1

〈k↔i |κ,θ〉

=
1

N

N∑
i=1

N∑
j=1
j 6=i

P (aij = 1, aji = 1|κ−i , κ+
i , κ

−
j , κ

+
j ,∆θij)

=
2

N

N∑
i=1

N∑
j=i+1

P (aij = 1, aji = 1|κ−i , κ+
i , κ

−
j , κ

+
j ,∆θij) . (S42)
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Averaging H↔i (z|κ,θ) over every possible sequence θ and κ\{κ−i , κ+
i } yields

H↔i (z|κ−i , κ+
i ) =

∫
· · ·
∫ π

0

H↔i (z|κ,θ)

N∏
j=1
j 6=i

1

π
d∆θijρ(κ−j , κ

+
j )dκ−j dκ

+
j

=

N∏
j=1
j 6=i

[∫∫∫ π

0

[
1− P (aij = 1, aji = 1|κ−i , κ+

i , κ
−
j , κ

+
j ,∆θij)

+ zP (aij = 1, aji = 1|κ−i , κ+
i , κ

−
j , κ

+
j ,∆θij)

] 1

π
d∆θijρ(κ−j , κ

+
j )dκ−j dκ

+
j

]

=

N∏
j=1
j 6=i

[∫∫ [
1−

〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j

〉

+ z
〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j

〉 ]
ρ(κ−j , κ

+
j )dκ−j dκ

+
j

]

=

N∏
j=1
j 6=i

[
1−

〈
ai•a•i

∣∣κ−i , κ+
i

〉
+ z

〈
ai•a•i

∣∣κ−i , κ+
i

〉 ]

=
[
1−

〈
ai•a•i

∣∣κ−i , κ+
i

〉
+ z

〈
ai•a•i

∣∣κ−i , κ+
i

〉 ]N−1

, (S43)

where 〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j

〉
=

∫ π

0

P (aij = 1, aji = 1|κ−i , κ+
i , κ

−
j , κ

+
j ,∆θij)

1

π
d∆θij (S44)

and 〈
ai•a•i

∣∣κ−i , κ+
i

〉
=

∫∫ 〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j

〉
ρ(κ−j , κ

+
j )dκ−j dκ

+
j . (S45)

The expected reciprocal degree of node i is then〈
k↔i
∣∣κ−i , κ+

i

〉
= (N − 1)

〈
ai•a•i

∣∣κ−i , κ+
i

〉
. (S46)

The ensemble average expected reciprocal degree is

〈k↔〉 =

∫∫ 〈
k↔i
∣∣κ−i , κ+

i

〉
ρ(κ−i , κ

+
i )dκ−i dκ

+
i . (S47)

F. Reciprocity

We are now in a position to combine the results from Sec. S.I with those from the previous subsections to study
the reciprocity in the networks generated by the directed-reciprocal S1 model. The reciprocity is defined as

r =
L↔

L
, (S48)

where L is the number of links, and L↔ is the number of reciprocal links. Note that for r to be such that 0 ≤ r ≤ 1,
each reciprocal connection (e.g. when two nodes are connected by two links in the opposite direction) must contribute
2 to L↔. Hence L↔ is an even number. Averaging Eq. (S48) over all possible angular positions θ and hidden
in/out-degrees κ, we get

〈r〉 =

〈
L↔

L

〉
≈ 〈L

↔〉
〈L〉 =

N 〈k↔〉
N 〈k+〉 =


(1 + ν) 〈r|ν=0〉 − ν 〈r|ν=−1〉 −1 ≤ ν ≤ 0

(1− ν) 〈r|ν=0〉+ ν 〈r|ν=1〉 0 ≤ ν ≤ 1

, (S49)

where we used Eqs. (S44)–(S47), and where we defined the following quantities.
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1. 〈r|ν=1〉 is the expected reciprocity when ν = 1

〈r|ν=1〉 =
〈k↔|ν=1〉
〈k+〉

=
N − 1

〈k+〉

∫∫∫∫ 〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=1

〉
× ρ(κ−i , κ

+
i )ρ(κ−j , κ

+
j )dκ−i dκ

+
i dκ

−
j dκ

+
j (S50)

with
〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=1

〉
being the expected reciprocal connection probability, Eq. (S44), when ν = 1

〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=1

〉
=

1

π

∫ π

0

min

{
P (aij = 1|κ+

i , κ
−
j ,∆θij), P (aji = 1|κ+

j , κ
−
i ,∆θij)

}
d∆θij

=
1

π

∫ π

0

min

{
1

1 + χβij
,

1

1 + χβji

}
d∆θij

= H(1− ξij)
1

π

∫ π

0

1

1 + χβij
d∆θij +H(ξij − 1)

1

π

∫ π

0

1

1 + χβji
d∆θij

= H(1− ξij)
2µκ+

i κ
−
j

N

∫ N

2µκ
+
i
κ
−
j

0

1

1 + χβij
dχij

+H(ξij − 1)
2µκ+

j κ
−
i

N

∫ N

2µκ
+
j
κ
−
i

0

1

1 + χβji
dχij

= H(1− ξij)2F1

1,
1

β
; 1 +

1

β
;−
[

N

2µκ+
i κ
−
j

]β
+H(ξij − 1)2F1

1,
1

β
; 1 +

1

β
;−
[

N

2µκ+
j κ
−
i

]β (S51)

' H(1− ξij)
2πµκ+

i κ
−
j

βN sin(π/β)
+H(ξij − 1)

2πµκ+
j κ
−
i

βN sin(π/β)

= H(1− ξij)
κ+
i κ
−
j

N〈κ〉 +H(ξij − 1)
κ+
j κ
−
i

N〈κ〉 , (S52)

where we used Eqs. (S95) and (S104), and where we set µ =
β sin(π/β)

2π〈κ〉 and defined ξij =
κ+
i

κ−i

κ−j
κ+
j

.

2. 〈r|ν=0〉 is the expected reciprocity when ν = 0

〈r|ν=0〉 =
〈k↔|ν=0〉
〈k+〉

=
N − 1

〈k+〉

∫∫∫∫ 〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=0

〉
× ρ(κ−i , κ

+
i )ρ(κ−j , κ

+
j )dκ−i dκ

+
i dκ

−
j dκ

+
j (S53)
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with 〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν = 0, ξij = 1

〉
=

1

π

∫ π

0

P (aij = 1|κ+
i , κ

−
j ,∆θij)P (aji = 1|κ+

j , κ
−
i ,∆θij)d∆θij

=
1

π

∫ π

0

1

1 + χβij

1

1 + χβji
d∆θij

=
1

π

∫ π

0

1(
1 + χβij

)2 d∆θij

=
2µκ+

i κ
−
j

N

∫ N

2µκ
+
i
κ
−
j

0

1(
1 + χβij

)2 dχij

= 2F1

2,
1

β
; 1 +

1

β
;−
[

N

2µκ+
i κ
−
j

]β (S54)

'
2πµκ+

i κ
−
j

βN sin(π/β)

(
1− 1

β

)
=
κ+
i κ
−
j

N〈κ〉

(
1− 1

β

)
(S55)

when ξij =
κ+
i

κ−i

κ−j
κ+
j

= 1, and

〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν = 0, ξij 6= 1

〉
=

1

π

∫ π

0

P (aij = 1|κ+
i , κ

−
j ,∆θij)P (aji = 1|κ+

j , κ
−
i ,∆θij)d∆θij

=
1

π

∫ π

0

1

1 + χβij

1

1 + χβji
d∆θij

=
1

π

∫ π

0

1

1 + χβij

1

1 + ξβijχ
β
ij

d∆θij

=
2µκ+

i κ
−
j

N

∫ N

2µκ
+
i
κ
−
j

0

1

1 + χβij

1

1 + ξβijχ
β
ij

dχij

=
1

1− ξβij
2F1

1,
1

β
; 1 +

1

β
;−
[

N

2µκ+
i κ
−
j

]β
−

ξβij

1− ξβij
2F1

1,
1

β
; 1 +

1

β
;−
[

N

2µκ+
j κ
−
i

]β (S56)

'
2πµκ+

i κ
−
j

βN sin(π/β)

1− ξβ−1
ij

1− ξβij

=
κ+
i κ
−
j

N〈κ〉
1− ξβ−1

ij

1− ξβij
(S57)

otherwise. In the last two equations, we again set µ =
β sin(π/β)

2π〈κ〉 , and used Eqs. (S101), (S104) and (S105).

3. 〈r|ν=−1〉 is the expected reciprocity when ν = −1

〈r|ν=−1〉 =
〈k↔|ν=−1〉
〈k+〉

=
N − 1

〈k+〉

∫∫∫∫ 〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=−1

〉
× ρ(κ−i , κ

+
i )ρ(κ−j , κ

+
j )dκ−i dκ

+
i dκ

−
j dκ

+
j (S58)
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with〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν = −1

〉
=

1

π

∫ π

0

[
P (aij = 1|κ+

i , κ
−
j ,∆θij) + P (aji = 1|κ+

j , κ
−
i ,∆θij)− 1

]
×H

(
P (aij = 1|κ+

i , κ
−
j ,∆θij) + P (aji = 1|κ+

j , κ
−
i ,∆θij)− 1

)
d∆θij

=
1

π

∫ ∆θc
ij

0

[
P (aij = 1|κ+

i , κ
−
j ,∆θij) + P (aji = 1|κ+

j , κ
−
i ,∆θij)− 1

]
d∆θij

=
1

π

∫ ∆θc
ij

0

d∆θij

1 + χβij
+

1

π

∫ ∆θc
ij

0

d∆θij

1 + χβji
− 1

π

∫ ∆θc
ij

0

d∆θij

=
2µκ+

i κ
−
j

N

∫ N∆θcij

2πµκ
+
i
κ
−
j

0

dχij

1 + χβij
+

2µκ+
j κ
−
i

N

∫ N∆θcij

2πµκ
+
j
κ
−
i

0

dχji

1 + χβji
−

∆θc
ij

π

=
∆θc

ij

π

[
2F1

1,
1

β
; 1 +

1

β
;−
[

N∆θc
ij

2πµκ+
i κ
−
j

]β
+ 2F1

1,
1

β
; 1 +

1

β
;−
[

N∆θc
ij

2πµκ+
j κ
−
i

]β− 1

]
(S59)

where we used Eq. (S95), and where ∆θc
ij is the solution of

P (aij = 1|κ+
i , κ

−
j ,∆θ

c
ij) + P (aji = 1|κ+

j , κ
−
i ,∆θ

c
ij) = 1 . (S60)

To explore the limit N →∞ such that N/(κ+
i κ
−
j )→∞ and N/(κ+

j κ
−
i )→∞, we note that

1 = P (aij = 1|κ+
i , κ

−
j ,∆θ

c
ij) + P (aji = 1|κ+

j , κ
−
i ,∆θ

c
ij)

=
1

1 +

[
N∆θc

ij

2πµκ+
i κ
−
j

]β +
1

1 +

[
N∆θc

ij

2πµκ+
j κ
−
i

]β
'

[2πµκ+
i κ
−
j ]β

[N∆θc
ij ]
β

+
[2πµκ+

j κ
−
i ]β

[N∆θc
ij ]
β

, (S61)

and thus

∆θc
ij '

2πµ

N

[
[κ+
i κ
−
j ]β + [κ+

j κ
−
i ]β
] 1
β

=
2πµκ+

i κ
−
j

N

[
1 + ξ−βij

] 1
β

. (S62)

Equation (S59) then becomes

〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν = −1

〉
'

2µκ+
i κ
−
j

N

[
1 + ξ−βij

] 1
β

[
2F1

(
1,

1

β
; 1 +

1

β
;−1− ξ−βij

)

+ 2F1

(
1,

1

β
; 1 +

1

β
;−1− ξβij

)
− 1

]

=
κ+
i κ
−
j

N〈κ〉
sin(π/β)

π/β

[
1 + ξ−βij

] 1
β

[
2F1

(
1,

1

β
; 1 +

1

β
;−1− ξ−βij

)

+ 2F1

(
1,

1

β
; 1 +

1

β
;−1− ξβij

)
− 1

]
, (S63)

where we set µ =
β sin(π/β)

2π〈κ〉 .
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S.III. NETWORK DATASETS

The network datasets used in the article have been made publicly available by the original authors and were
downloaded from The Netzschleuder network catalogue and repository (https://networks.skewed.de). The name
of each dataset is listed below:

7th graders add health comm15 add health comm27

add health comm28 add health comm33 add health comm40

add health comm41 add health comm50 add health comm61

add health comm62 add health comm68 add health comm73

add health comm75 add health comm79 add health comm81

add health comm83 add health comm84 advogato

anybeat bison bitcoin alpha

bitcoin trust caida as 20040105 caida as 20040202

caida as 20040301 caida as 20040405 caida as 20040503

caida as 20040607 caida as 20040705 caida as 20040802

caida as 20040906 caida as 20041004 caida as 20041101

caida as 20041206 caida as 20050103 caida as 20050207

caida as 20050307 caida as 20050404 caida as 20050502

caida as 20050606 caida as 20050704 caida as 20050801

caida as 20050905 caida as 20051003 caida as 20051107

caida as 20051205 caida as 20060102 caida as 20060109

caida as 20060116 caida as 20060123 caida as 20060130

caida as 20060206 caida as 20060213 caida as 20060220

caida as 20060227 caida as 20060306 caida as 20060313

caida as 20060320 caida as 20060327 caida as 20060403

caida as 20060410 caida as 20060417 caida as 20060424

caida as 20060501 caida as 20060508 caida as 20060515

caida as 20060522 caida as 20060529 caida as 20060605

caida as 20060612 caida as 20060619 caida as 20060626

caida as 20060703 caida as 20060710 caida as 20060717

caida as 20060724 caida as 20060731 caida as 20060807

caida as 20060814 caida as 20060821 caida as 20060828

caida as 20060904 caida as 20060911 caida as 20060918

caida as 20060925 caida as 20061002 caida as 20061009

caida as 20061016 caida as 20061023 caida as 20061030

caida as 20061106 caida as 20061113 caida as 20061120

caida as 20061127 caida as 20061204 caida as 20061211

caida as 20061218 caida as 20061225 caida as 20070101

caida as 20070108 caida as 20070115 caida as 20070122

caida as 20070129 caida as 20070205 caida as 20070212

caida as 20070219 caida as 20070226 caida as 20070305

caida as 20070312 caida as 20070423 caida as 20070917

cattle celegans 2019 hermaphrodite chemical celegans 2019 hermaphrodite chemical corrected

celegans 2019 hermaphrodite chemical synapse celegans 2019 male chemical celegans 2019 male chemical corrected

celegans 2019 male chemical synapse celegansneural chess

chicago road cintestinalis college freshmen

copenhagen calls copenhagen sms cora

dblp cite dutch school klas12b-net-1 dutch school klas12b-net-2

dutch school klas12b-net-3 dutch school klas12b-net-3m dutch school klas12b-net-4

dutch school klas12b-net-4m dutch school klas12b-primary ecoli transcription v1 0

ecoli transcription v1 1 email company faa routes

fao trade foodweb baywet foodweb little rock

fresh webs AkatoreA fresh webs AkatoreB fresh webs Berwick

fresh webs Blackrock fresh webs Broad fresh webs Canton

fresh webs Catlins fresh webs Coweeta1 fresh webs Coweeta17

fresh webs DempstersAu fresh webs DempstersSp fresh webs DempstersSu

fresh webs German fresh webs Healy fresh webs Kyeburn

fresh webs LilKyeburn fresh webs Martins fresh webs Narrowdale

fresh webs NorthCol fresh webs Powder fresh webs Stony

fresh webs SuttonAu fresh webs SuttonSp fresh webs SuttonSu

fresh webs Troy fresh webs Venlaw freshman t0

freshman t2 freshman t3 freshman t5

https://networks.skewed.de
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freshman t6 freshmen t0 freshmen t2

freshmen t3 freshmen t5 freshmen t6

genetic multiplex Arabidopsis genetic multiplex Bos Multiplex Genetic genetic multiplex Candida

genetic multiplex Celegans genetic multiplex DanioRerio genetic multiplex Drosophila

genetic multiplex Gallus genetic multiplex HepatitusCVirus genetic multiplex HumanHIV1

genetic multiplex HumanHerpes4 genetic multiplex Mus genetic multiplex Oryctolagus

genetic multiplex Plasmodium genetic multiplex Rattus genetic multiplex Sacchpomb

genetic multiplex Xenopus gnutella 04 gnutella 06

gnutella 08 gnutella 09 gnutella 25

hens high tech company highschool

inploid interactome figeys interactome stelzl

jdk jung law firm

macaques messal shale moreno sheep

moreno taro openflights packet delays

physician trust polblogs qa user mathoverflow a2q

qa user mathoverflow c2a qa user mathoverflow c2q residence hall

rhesus monkey sp high school diaries sp high school survey

un migrations uni email us agencies alabama

us agencies alaska us agencies arizona us agencies arkansas

us agencies california us agencies colorado us agencies connecticut

us agencies delaware us agencies florida us agencies georgia

us agencies hawaii us agencies idaho us agencies illinois

us agencies indiana us agencies iowa us agencies kansas

us agencies kentucky us agencies louisiana us agencies maine

us agencies maryland us agencies massachusetts us agencies michigan

us agencies minnesota us agencies mississippi us agencies missouri

us agencies montana us agencies nebraska us agencies nevada

us agencies newhampshire us agencies newjersey us agencies newmexico

us agencies newyork us agencies northcarolina us agencies northdakota

us agencies ohio us agencies oklahoma us agencies oregon

us agencies pennsylvania us agencies rhodeisland us agencies southcarolina

us agencies southdakota us agencies tennessee us agencies texas

us agencies utah us agencies vermont us agencies virginia

us agencies washington us agencies westvirginia us agencies wisconsin

us agencies wyoming us air traffic webkb webkb cornell link1

webkb webkb texas link1 webkb webkb washington link1 webkb webkb wisconsin link1

wiki talk br wiki talk cy wiki talk eo

wiki talk gl wiki talk ht wiki talk nds

wiki talk oc wikipedia link si word adjacency darwin

word adjacency french word adjacency japanese word adjacency spanish

yeast transcription



15

S.IV. INFERENCE ALGORITHM

The inference algorithm used in the main text is an adaptation of the parameter inference procedure of the embed-
ding algorithm introduced in Ref. [1]. Its objective is to infer the 2N + 2 parameters κ = κ−1 , κ

+
1 , . . . , κ

−
N , κ

+
N , β and ν

so that the directed-reciprocal S1 model will reproduce, on average, the joint in/out-degree sequence, the reciprocity
and the density of triangles of an original real directed network (2N + 2 constraints).

Note that, contrary to the embedding algorithm introduced in Ref. [1], the inference algorithm does not aim to
infer the angular positions, θ; the aforementioned 2N + 2 parameters are therefore inferred when averaging over all
possible angular positions.

A. Inputs

The following 2N + 2 constraints are measured on an original real directed network and used as inputs for the
inference algorithm.

1. The joint in/out-degree sequence k = {k−1 , k+
1 , . . . , k

−
N , k

+
N}, where

k−i = |∂−i | (S64a)

k+
i = |∂+

i | , (S64b)

and where ∂−i (∂+
i ) is the set of in-neighbors (out-neighbors) of node i in the original real directed network.

2. The reciprocity robs computed as

robs =
L↔

L
=

∑N
i=1 |∂−i ∩ ∂+

i |∑N
i=1 |∂+

i |
, (S65)

where |∂−i ∩ ∂+
i | counts the number of neighbors with which node i shares both possible directed links (i.e.

reciprocal connection).

3. The density of triangles, c̄obs, as measured by the average undirected local clustering coefficient

c̄obs
undir =

1

N>1

N∑
i=1

ci =
1

N>1

N∑
i=1

2Ti

|∂−i ∪ ∂+
i |
(
|∂−i ∪ ∂+

i | − 1
) (S66)

where Ti is the number of triangles to which node i participates, where the quantity |∂−i ∪ ∂+
i | corresponds to

the degree of node i in the undirected version of the network, and where N>1 is the number of nodes for which
|∂−i ∪ ∂+

i | > 1. Note that we set ci = 0 for the N −N>1 nodes for which |∂−i ∪ ∂+
i | < 2.

B. Inferring the hidden in/out-degrees

This subroutine assumes that a maximal deviation tolerance εmax
tol and the parameter β have both been assigned

some value (e.g. εmax
tol = 0.01), and uses

µ =
β sin

(
π
β

)
2π〈k+〉 (S67)

where 〈k+〉 is the average out-degree (or equivalently average in-degree) in the original real directed network

〈k+〉 =
1

N

N∑
i=1

k+
i =

1

N

N∑
i=1

k−i . (S68)

1. Initialize the hidden in/out-degrees by setting κ−i = k−i and κ+
i = k+

i for all i = 1, . . . , N .
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2. Compute expected in/out-degrees as

〈
k−i
∣∣κ〉 =

N∑
j=1
j 6=i

〈
aji
∣∣κ+
j , κ

−
i

〉
=

N∑
j=1
j 6=i

2F1

1,
1

β
; 1 +

1

β
;−
[

N

2µκ+
j κ
−
i

]β , (S69a)

〈
k+
i

∣∣κ〉 =

N∑
j=1
j 6=i

〈
aij
∣∣κ+
i , κ

−
j

〉
=

N∑
j=1
j 6=i

2F1

1,
1

β
; 1 +

1

β
;−
[

N

2µκ+
i κ
−
j

]β , (S69b)

for all i = 1, . . . , N . Equations (S69a) and (S69b) are obtained by averaging Eq. (S20) (and its equivalent for
in-degrees) over all angular positions, combined with Eq. (S23a).

3. Compute the largest deviation, εmax, between the expected in/out-degrees and the in/out-degrees in the original
network as

εmax = max

{
max

{∣∣ 〈k−i ∣∣κ〉− k−i ∣∣, ∣∣ 〈k+
i

∣∣κ〉− k+
i

∣∣} : i = 1, . . . , N

}
. (S70)

The hidden in/out-degrees have converged to acceptable values if εmax < εmax
tol and we proceed to step 6.

Otherwise, they require more refinement and we proceed to step 4.

4. Update the hidden in/out-degrees according to

κ−i ←
∣∣∣κ−i +

[
k−i −

〈
k−i
∣∣κ〉 ]u−∣∣∣ , (S71a)

κ+
i ←

∣∣∣κ+
i +

[
k+
i −

〈
k+
i

∣∣κ〉 ]u+
∣∣∣ , (S71b)

for all i = 1, . . . , N , and where u− ∼ Uniform(0, 1) and u+ ∼ Uniform(0, 1). The random variables prevent the
subroutine from getting trapped in a local minimum.

5. Proceed to step 2 using the updated values for the hidden in/out-degrees.

6. Compute the expected in-degree and out-degree as

〈
k−
∣∣κ〉 =

1

N

N∑
i=1

〈
k−i
∣∣κ〉 (S72a)

〈
k+
∣∣κ〉 =

1

N

N∑
i=1

〈
k+
i

∣∣κ〉 . (S72b)

Equations (S72a) and (S72b) are obtained by averaging Eq. (S22) (and its equivalent for in-degrees) over all
angular positions. Note that 〈k−|κ〉 and 〈k+|κ〉 will be equal up to the numerical error induced by εmax

tol .

C. Inferring parameter ν

This subroutine assumes that the parameter β has been assigned some value, and uses the parameter µ, the hidden
in/out-degrees, κ = κ−1 , κ

+
1 , . . . , κ

−
N , κ

+
N , as well as the expected out-degree, 〈k+|κ〉, computed in Sec. S.IV B.

The expected reciprocity in the directed-reciprocal S1 model is computed as

〈r|κ〉 =

〈
L↔

L

∣∣∣∣κ〉 ≈ 〈L↔|κ〉〈L|κ〉 =
N 〈k↔|κ〉
N 〈k+|κ〉 , (S73)

where 〈k+|κ〉 is taken from Eq. (S72b) and 〈k↔|κ〉 is computed by averaging Eq. (S42) over all angular positions.
Equation (S73) then takes a similar form as Eq. (S49) and becomes

〈r|κ〉 ≈


(1 + ν) 〈r|κ, ν=0〉 − ν 〈r|κ, ν=−1〉 if − 1 ≤ ν ≤ 0

(1− ν) 〈r|κ, ν=0〉+ ν 〈r|κ, ν=1〉 if 0 ≤ ν ≤ 1

, (S74)
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and the inferred value of ν is obtained such that 〈r|κ〉 = robs. This subroutine computes 〈r|κ〉 and ν via the following
steps.

1. Compute the expected reciprocity when ν = 1 using

〈r|κ, ν=1〉 =
〈k↔|κ, ν=1〉
〈k+|κ〉 =

2

N 〈k+|κ〉
N∑
i=1

N∑
j=i+1

〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=1

〉
(S75a)

where

〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=1

〉
=



2F1

1,
1

β
; 1 +

1

β
;−
[

N

2µκ+
i κ
−
j

]β if ξij =
κ+
i

κ−i

κ−j

κ+
j

< 1

2F1

1,
1

β
; 1 +

1

β
;−
[

N

2µκ+
j κ
−
i

]β if ξij =
κ+
i

κ−i

κ−j

κ+
j

> 1

. (S75b)

Equations (S75a) and (S75b) are obtained by averaging Eq. (S42) over all angular positions, combined with
Eq. (S51).

2. Compute the expected reciprocity when ν = 0 using

〈r|κ, ν=0〉 =
〈k↔|κ, ν=0〉
〈k+|κ〉 =

2

N 〈k+|κ〉
N∑
i=1

N∑
j=i+1

〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=0

〉
(S76a)

where

〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=0

〉
=



1

1− ξβij
2F1

1,
1

β
; 1 +

1

β
;−
[

N

2µκ+
i κ
−
j

]β
−

ξβij

1− ξβij
2F1

1,
1

β
; 1 +

1

β
;−
[

N

2µκ+
j κ
−
i

]β if ξij =
κ+
i

κ−i

κ−j

κ+
j

6= 1

2F1

2,
1

β
; 1 +

1

β
;−
[

N

2µκ+
i κ
−
j

]β if ξij =
κ+
i

κ−i

κ−j

κ+
j

= 1

. (S76b)

Equations (S76a) and (S76b) are obtained by averaging Eq. (S42) over all angular positions, combined with
Eqs. (S54) and (S56).

3. Compute the expected reciprocity when ν = −1 using

〈r|κ, ν=0〉 =
〈k↔|κ, ν=−1〉
〈k+|κ〉 =

2

N 〈k+|κ〉
N∑
i=1

N∑
j=i+1

〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=−1

〉
(S77a)

where

〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=−1

〉
=

∆θc
ij

π


2F1

1,
1

β
; 1 +

1

β
;−
[

N∆θc
ij

2πµκ+
i κ
−
j

]β
+ 2F1

1,
1

β
; 1 +

1

β
;−
[

N∆θc
ij

2πµκ+
j κ
−
i

]β− 1

 (S77b)

and where ∆θc
ij ∈ [0, π] is the solution of

P (aij = 1|κ+
i , κ

−
j ,∆θ

c
ij) + P (aji = 1|κ+

j , κ
−
i ,∆θ

c
ij) = 1 . (S77c)

Equations (S77a)–(S77c) are obtained by averaging Eq. (S42) over all angular positions, combined with Eq. (S59).
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4. Compute the inferred value of ν according to

ν =


robs − 〈r|κ, ν=0〉

〈r|κ, ν=−1〉+ 〈r|κ, ν=0〉 if robs < 〈r|κ, ν=0〉

robs − 〈r|κ, ν=0〉
〈r|κ, ν=1〉 − 〈r|κ, ν=0〉 if robs > 〈r|κ, ν=0〉

. (S78)

D. Estimating the expected density of triangles

This subroutine assumes that the parameter β has been assigned some value, uses the parameter ν computed in
Sec. S.IV C, and uses the parameter µ as well as the hidden in/out-degrees, κ = κ−1 , κ

+
1 , . . . , κ

−
N , κ

+
N computed in

Sec. S.IV B.

The density of triangles is quantified using the average undirected local clustering coefficient, that is the average
local clustering coefficient measured on the undirected projection of the directed network. This projection is specified
via its adjacency matrix, Ã, whose elements are ãij = max(aij , aji). In other words, two nodes are connected in the
projection if they are connected by at least one directed link, which occurs with probability

P (ãij = 1|κ−i , κ+
i , κ

−
j , κ

+
j ,∆θij) = Pij(aij = 1, aji = 0|κ−i , κ+

i , κ
−
j , κ

+
j ,∆θij)

+ Pij(aij = 0, aji = 1|κ−i , κ+
i , κ

−
j , κ

+
j ,∆θij)

+ Pij(aij = 1, aji = 1|κ−i , κ+
i , κ

−
j , κ

+
j ,∆θij) . (S79)

This last expression can be rewritten as

P (ãij = 1|κ−i , κ+
i , κ

−
j , κ

+
j ,∆θij) = Pij(aij = 1|κ+

i , κ
−
j ,∆θij)

+ Pij(aji = 1|κ−i , κ+
j ,∆θij)

− Pij(aij = 1, aji = 1|κ−i , κ+
i , κ

−
j , κ

+
j ,∆θij) , (S80)

where the three probabilities on the right-hand side are obtained using Eqs. (S15) and (S18). Let us also introduce
P (ãij = 1|κ−i , κ+

i , κ
−
j , κ

+
j ) which corresponds to P (ãij = 1|κ−i , κ+

i , κ
−
j , κ

+
j ,∆θij) averaged over all possible angular

positions

P (ãij = 1|κ−i , κ+
i , κ

−
j , κ

+
j ) =

∫
P (ãij = 1|κ−i , κ+

i , κ
−
j , κ

+
j )P (∆θij)d∆θij

=
〈
aij
∣∣κ+
i , κ

−
j

〉
+
〈
aji
∣∣κ+
j , κ

−
i

〉
−
〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j

〉
, (S81)

where
〈
aij
∣∣κ+
i , κ

−
j

〉
and

〈
aji
∣∣κ+
j , κ

−
i

〉
are computed using Eq. (S23a), and where

〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j

〉
=



(1 + ν)
〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=0

〉
−ν
〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=−1

〉
−1 ≤ ν ≤ 0

(1− ν)
〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=0

〉
+ν
〈
aijaji

∣∣κ−i , κ+
i , κ

−
j , κ

+
j , ν=1

〉
0 ≤ ν ≤ 1

(S82)

is computed using Eqs. (S51), (S54), (S56) and (S59).

From these quantities, we use Bayes theorem to define two probability distributions with which we estimate the
expected density of triangles. The first one corresponds to the probability that neighbor j of node i has hidden degrees
κ−j , κ

+
j regardless of the angular distance

P (κ−j , κ
+
j |ãij = 1, κ−i , κ

+
i ) =

P (ãij = 1|κ−i , κ+
i , κ

−
j , κ

+
j )P (κ−j , κ

+
j )

P (ãi• = 1|κ−i , κ+
i )

(S83)

where P (ãi• = 1|κ−i , κ+
i ) is a normalization constant. The second distribution provides the probability that neigh-

boring nodes i and j are at angular distance ∆θij

P (∆θij |ãij = 1, κ−i , κ
+
i , κ

−
j , κ

+
j ) =

P (ãij = 1|κ−i , κ+
i , κ

−
j , κ

+
j ,∆θij)P (∆θij)

P (ãij = 1|κ−i , κ+
i , κ

−
j , κ

+
j )

. (S84)
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Recall that P (∆θij) = 1/π in the directed-reciprocal S1 model.

With these quantities in hand, the expected density of triangles is estimated by computing

c̄undir ≈
1

MN>1

N∑
i=1

M∑
m=1

c
(m)
i 1{k−i +k+

i >1} , (S85)

where 1{·} is the indicator function, M is the number of samples to be drawn for each node i, and where the m-th

sample, c
(m)
i , is obtained with the following procedure.

1. Pick the hidden degrees of two neighbors, (κ−1 , κ+
1 ) and (κ−2 , κ+

2 ), by sampling Eq. (S83) twice.

2. Pick the angular distance between node i and nodes 1 and 2, ∆θi1 and ∆θi2, by sampling Eq. (S84) twice.

3. Set the angular distance between nodes 1 and 2. Since it is equally likely for nodes 1 and 2 to be “on the same
side” or “on opposite sides” from node i, we set

∆θ12 =


min

{
|∆θi1 + ∆θi2|, 2π − |∆θi1 + ∆θi2|

}
with probability 1/2

|∆θi1 −∆θi2| with probability 1/2

. (S86)

4. Compute the probability for nodes 1 and 2 to be connected and set c
(m)
i = P (ã12 = 1|κ−1 , κ+

1 , κ
−
2 , κ

+
2 ,∆θ12).

Note: The average undirected local clustering coefficient is a convenient measure to estimate the value of β. However,
because it does not fully embrace the direction of links, leading to an ambiguous definition of the degree used at
the denominator (see Methods), the estimated value for β may require some manual adjustments for the model to
accurately reproduce the number of triangles observed in the original network. See Fig. S2 for an illustration.

E. The algorithm

The algorithm assumes that a maximal deviation tolerance, ηtol, has been assigned, as well as defines c̄min
undir = 0,

c̄max
undir = 1, βmin = 1 and βmax = 25.

1. Set the initial value for the parameter β as β = 1 + u where u ∼ Uniform(0, 1).

2. Infer the hidden in/out-degrees κ = κ−1 , κ
+
1 , . . . , κ

−
N , κ

+
N by following the procedure explained in Sec. S.IV B.

3. Infer the parameter ν by following the procedure explained in Sec. S.IV C.

4. Estimate the triangle density c̄undir by following the procedure explained in Sec. S.IV D.

5. Check for convergence by checking if |c̄undir − c̄obs
undir| < ηtol, then all 2N + 2 parameters have been estimated

within the tolerance parameters. Otherwise, proceed to step 6.

6. Update the value of the parameter β (bisection method):

(a) If c̄undir > c̄obs
undir, then set βmax = β, set c̄max

undir = c̄undir and proceed to step 6c.

(b) If c̄undir < c̄obs
undir, then set βmin = β, set c̄min

undir = c̄undir and proceed to step 6c.

(c) Update β to its new value according to

β = βmin + (βmax − βmin)
c̄obs
undir − c̄min

undir

c̄max
undir − c̄min

undir

.

(d) Proceed to step 2.
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S.V. MODELING REAL DIRECTED COMPLEX NETWORKS

A. Reproducing clustering and reciprocity

Figures S2 and S3 compare the accuracy with which the directed-reciprocal S1 model reproduces the average
undirected local clustering coefficient, the number of triangles, as well as the reciprocity.
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FIG. S2. Symbols represent the values measured on the original networks, and the small translucid circles show the same values
measured on synthetic networks generated using the parameters inferred by the algorithm presented in Sec. S.IV (1000 network
instances).
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instances).
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B. Additional triangle spectra

Figure S4 provides further examples of the capacity of the directed-reciprocal S1 model to reproduce the triangle
spectra observed in various real directed networks. Table SI contains the parameters inferred for each network dataset.
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FIG. S4. Reproducing triangle spectrum of real directed networks with the directed-reciprocal S1 model. (a)
Neural connections of the C. elegans nematode (dataset celegansneural [2, 3]). (b) Emails among members of a university
(dataset uni email [4]). (c) Friendships among high school students(dataset add health comm50 [5]). (d) Messel Shale food
web (dataset messal shale [6]). (e) E. coli transcription network (dataset ecoli transcription v1 0 [7]). (f) Social interac-
tions among university students (dataset copenhagen calls [8]). (g) Links between Vermont’s government agencies websites
(dataset: us agencies vermont) [9]). (h) Trust relationships among physicians (dataset physician trust [10]). (i) Migration
between countries (dataset un migrations [11]). (j) Yeast transcription network (dataset yeast transcription [12]). (k)
Air traffic routes (dataset faa routes [13]). (l) Social interactions among university students (dataset copenhagen sms [8]).
(m) Binding interactions between human proteins (dataset interactome figeys [14]). (n) Regularly occurring flights among
airports worldwide (dataset openflights [15]). (o) Networks among neurons of both the adult male and adult hermaphrodite
worms C. elegans (dataset celegans 2019 male chemical [16]). (p) Match outcomes between chess players (dataset chess [17]).
Network datasets were downloaded from The Netzschleuder network catalogue and repository (https://networks.skewed.de).
For each dataset, the parameters of the directed-reciprocal S1 model were adjusted using the inference procedure described in
Sec. S.IV. Vertical lines show the estimated 95% confidence interval (2.5 and 97.5 percentiles).

https://networks.skewed.de
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TABLE SI. Parameters inferred for the network datasets used in Fig. 4 and Fig. S4.

Dataset Figure β ν
political blogs 4(e) 1.75 0.43
tadpole larva brain (C. intestinalis) 4(f) 2.00 0.23
Little Rock Lake food web 4(g) 1.50 -1.00
FAO trade network 4(h) 1.75 0.34
Advogato trust network 4(i) 1.24 0.66
manufacturing company email 4(j) 1.50 1.00
primary school contacts 4(k) 2.43 0.88
U.S. government agency websites 4(l) 1.26 0.32
friendship network 4(m) 1.82 0.73
C. elegans connectome S4(a) 1.28 -0.41
email network (Uni. R-V, Spain) S4(b) 1.45 1.00
frienship network 2 S4(c) 1.40 0.48
Messel Shale food web S4(d) 1.01 -0.91
E. coli transcription network S4(e) 1.50 -0.02
Copenhagen networks study (calls) S4(f) 1.50 1.00
U.S. government agency websites (VT) S4(g) 2.00 0.11
physician trust network S4(h) 1.67 0.27
UN migration stock S4(i) 4.50 -0.73
yeast transcription network S4(j) 1.20 0.02
FAA preferred routes S4(k) 1.01 0.08
Copenhagen networks study (sms) S4(l) 1.30 1.00
Figeys human interactome S4(m) 1.01 1.00
Openflights airport network S4(n) 3.25 1.00
C. elegans neurons (male, chemical) S4(o) 2.00 -0.42
chess matches S4(p) 1.30 -0.17
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S.VI. USEFUL RESULTS INVOLVING THE HYPERGEOMETRIC FUNCTION

Letting a, b ∈ C, c ∈ C\{0,−1,−2,−3, . . .} and z ∈ Z, the hypergeometric function is defined by the Gauss series
as [18]

2F1(a, b; c; z) =

∞∑
n=0

Γ(a+ n)

Γ(a)

Γ(b+ n)

Γ(b)

Γ(c)

Γ(c+ n)

zn

n!
(S87)

for |z| < 1 and elsewhere by analytic continuation. In what follows, we will use the following identity [19]

2F1(a, b; c; z) =
πΓ(c)

sinπ(b− a)

[
(−z)−a

Γ(c− a)Γ(b)Γ(a− b+ 1)
2F1

(
a, a− c+ 1, a− b+ 1;

1

z

)

− (−z)−b
Γ(c− b)Γ(a)Γ(b− a+ 1)

2F1

(
b, b− c+ 1, b− a+ 1;

1

z

)]
(S88)

valid for arg(1− z) < π, as well as [20]

z 2F1(a, b+ 1; c+ 1; z) =
c

b
2F1(a, b; c; z)− c

b
2F1(a− 1, b; c; z) . (S89)

We will also need Euler’s reflection formula [21]

Γ(z)Γ(1− z) =
π

sin(πz)
(S90)

valid for z 6= 0,±1,±2, . . .

We seek to evaluate the integral
∫

dx
1+xβ

for x > 0 and β > 1. To do so, we split the open interval x > 0 into two
parts. First, we find for 0 < x < 1

∫
dx

1 + xβ
=

∫
1

1− (−xβ)
dx

=

∫ ∞∑
n=0

(
−xβ

)n
dx

= x

∞∑
n=0

(
−xβ

)n
βn+ 1

+ C

= x

∞∑
n=0

Γ(1 + n)

n!Γ(1)

Γ( 1
β )

Γ( 1
β )

Γ( 1
β + n)

Γ( 1
β + n)

1
β

1
β + n

(
−xβ

)n
+ C1

= x

∞∑
n=0

Γ(1 + n)

Γ(1)

Γ( 1
β + n)

Γ( 1
β )

Γ(1 + 1
β )

Γ(1 + 1
β + n)

(
−xβ

)n
n!

+ C1

= x 2F1

(
1,

1

β
; 1 +

1

β
;−xβ

)
+ C1 (S91)
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where C1 ∈ R. Second, we find for x > 1∫
dx

1 + xβ
=

∫
1

xβ
1

1− (−x−β)
dx

= −
∫ ∞∑

n=0

(
−x−β

)n+1
dx

= −x
∞∑
n=0

(
−x−β

)n+1

−β(n+ 1) + 1
+ C2

= −x
∞∑
m=1

(
−x−β

)m
−βm+ 1

+ C2

= −x
∞∑
m=1

Γ(1 +m)

m!Γ(1)

Γ(− 1
β )

Γ(− 1
β )

Γ(− 1
β +m)

Γ(− 1
β +m)

− 1
β

− 1
β +m

(
−x−β

)m
+ C2

= −x
∞∑
m=1

Γ(1 +m)

Γ(1)

Γ(− 1
β +m)

Γ(− 1
β )

Γ(1− 1
β )

Γ(1− 1
β +m)

(
−x−β

)m
m!

+ C2

= −x
[

2F1

(
1,− 1

β
; 1− 1

β
;−x−β

)
− 1

]
+ C2 (S92)

where C2 ∈ R. Combining Eqs. (S88) and (S90), we find

2F1

(
1,− 1

β
; 1− 1

β
;−x−β

)
=

1
β

1 + 1
β

xβ 2F1

(
1, 1 +

1

β
, 2 +

1

β
;−xβ

)
+

1

β

Γ(− 1
β − 1)Γ(2 + 1

β )

x
. (S93)

Using Eq. (S89), we find

xβ 2F1

(
1, 1 +

1

β
, 2 +

1

β
;−xβ

)
= −

1 + 1
β

1
β

2F1

(
1,

1

β
; 1 +

1

β
;−xβ

)
+

1 + 1
β

1
β

(S94)

Combining Eqs. (S91)–(S94), we finally get∫
dx

1 + xβ
= x 2F1

(
1,

1

β
; 1 +

1

β
;−xβ

)
+ C3 (S95)

for x > 0 and β > 1, and where C3 ∈ R.

We also seek to evaluate the integral
∫

dx
(1+xβ)2 for x > 0 and β > 1. Again, we split the open interval x > 0 into

two parts. First, we find for 0 < x < 1∫
dx

(1 + xβ)2
=

∫
d

d(−xβ)

1

1− (−xβ)
dx

=

∫
d

d(−xβ)

∞∑
n=0

(
−xβ

)n
dx

=

∫ ∞∑
n=1

n
(
−xβ

)n−1
dx

= x

∞∑
m=0

(m+ 1)
(
−xβ

)m
βm+ 1

+ C4

= x

∞∑
m=0

(m+ 1)
Γ(1 +m)

m!Γ(1)

Γ( 1
β )

Γ( 1
β )

Γ( 1
β +m)

Γ( 1
β +m)

1
β

1
β +m

(
−xβ

)m
+ C4

= x

∞∑
m=0

Γ(2 +m)

Γ(2)

Γ( 1
β +m)

Γ( 1
β )

Γ(1 + 1
β )

Γ(1 + 1
β +m)

(
−xβ

)m
m!

+ C4

= x 2F1

(
2,

1

β
; 1 +

1

β
;−xβ

)
+ C4 (S96)
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where C4 ∈ R. Second, we find for x > 1∫
dx

(1 + xβ)2
=

∫
1

x2β

dx

(1 + x−β)2

=

∫
x−2β d

d(−xβ)

1

1− (−x−β)
dx

=

∫
x−2β d

d(−x−β)

∞∑
n=0

(
−x−β

)n
dx

=

∫ ∞∑
n=1

n
(
−x−β

)n+1
dx

= x(−x−β)

∞∑
n=1

(−x−β)
d

d(−x−β)

(
−x−β

)n
−β(n+ 1) + 1

+ C5

= x(−x−β)2 d

d(−x−β)

∞∑
n=1

(
−x−β

)n
−β(n+ 1) + 1

+ C5

= x(−x−β)2 d

d(−x−β)

∞∑
n=1

Γ(1 + n)

Γ(1)n!

− 1
β

1− 1
β + n

1− 1
β

1− 1
β

Γ(1− 1
β )

Γ(1− 1
β )

Γ(1− 1
β + n)

Γ(1− 1
β + n)

(
−x−β

)n
+ C5

= x(−x−β)2
− 1
β

1− 1
β

d

d(−x−β)

∞∑
n=1

Γ(1 + n)

Γ(1)

Γ(1− 1
β + n)

Γ(1− 1
β )

Γ(2− 1
β )

Γ(2− 1
β + n)

(
−x−β

)n
n!

+ C5

= x(−x−β)2
− 1
β

1− 1
β

d

d(−x−β)

[
2F1

(
1, 1− 1

β
; 2− 1

β
;−x−β

)
− 1

]
+ C5

=
− 1
β

2− 1
β

x(−x−β)2
2F1

(
2, 2− 1

β
; 3− 1

β
;−x−β

)
+ C5 (S97)

where C5 ∈ R and where we used the following identity [22] to obtain the last equality

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z) . (S98)

Using Eqs. (S88) and (S90), Eq. (S97) becomes∫
dx

(1 + xβ)2
= x 2F1

(
2,

1

β
; 1 +

1

β
;−xβ

)
+ (1− 1

β )Γ(1− 1
β )Γ(1 + 1

β ) + C5 , (S99)

which, combined with Eq. (S96), yields∫
dx

(1 + xβ)2
= x 2F1

(
2,

1

β
; 1 +

1

β
;−xβ

)
+ C6 , (S100)

for x > 0 and β > 1, and where C6 ∈ R.

We additionally seek to evaluate the following integral, which can be solved using Eqs. (S95) and (S100)∫
1

1 + xβ
1

1 + (κx)β
dx =

1

1− κβ
∫

dx

1 + xβ
− κβ

1− κβ
∫

dx

1 + (κx)β

=



x 2F1

(
2,

1

β
; 1 +

1

β
;−xβ

)
+ C7 for κ = 1

x

1− κβ 2F1

(
1,

1

β
; 1 +

1

β
;−xβ

)
− xκβ

1− κβ 2F1

(
1,

1

β
; 1 +

1

β
;−(κx)β

)
+ C8 for κ 6= 1

(S101)
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with κ > 0 and β > 1, C7, C8 ∈ R and x > 0.

Letting d ∈ {1, 2}, we use Eq. (S88) to write

z 2F1

(
d,

1

β
; 1 +

1

β
;−zβ

)
=

(−1)dπ

sin(πβ )

Γ(1 + 1
β )

Γ(1 + 1
β − d)

[ ∞∑
n=0

(−1)nΓ(d+ n)Γ(d− 1
β + n)

Γ(d− 1
β )Γ( 1

β )n!Γ(d− 1
β + 1 + s)

z1−(n+d)β − 1

]
, (S102)

which yields

lim
z→∞

z 2F1

(
d,

1

β
; 1 +

1

β
;−zβ

)
=

(−1)d+1π

sin(πβ )

Γ(1 + 1
β )

Γ(1 + 1
β − d)

, (S103)

and more specifically

lim
z→∞

z 2F1

(
1,

1

β
; 1 +

1

β
;−zβ

)
=
π

β

1

sin(πβ )
(S104)

and

lim
z→∞

z 2F1

(
2,

1

β
; 1 +

1

β
;−zβ

)
=
π(β − 1)

β2

1

sin(πβ )
. (S105)
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