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3ICREA, Pg. Llúıs Companys 23, E-08010 Barcelona, Spain

Contents

I. Evidence of geometric scaling in real networks 2

II. The Geometric Renormalization Group 4
A. The semigroup structure of the coarse-graining step 4
B. Selecting long-range connections 5
C. Geometric renormalization of the S1 model 5
D. RG flow of the average degree 7

Particular case r = 2 8
Solution in the power-law approximation 10

E. Renormalization in D-dimensional similarity space 12
1. Model, transformations and average degree flow 12
2. The dimension of similarity space in real-world networks 13

F. Mapping to hyperbolic space and the partition function 15
G. Local vs. global properties 17

III. Downscaled network replicas 20

IV. Multiscale navigation networks 21

References 22



2

I. EVIDENCE OF GEOMETRIC SCALING IN REAL NETWORKS

The real networks analyzed in this paper are:

• The Internet at the Autonomous Systems level. The data was collected by the Cooperative Association for
Internet Data Analysis (CAIDA) [1] and corresponds to mid 2009.

• The Airports network. It was obtained from Ref. [2, 3]. Directed links represent flights by airlines. We consider
the undirected version obtained by keeping bidirectional edges only.

• The one-mode projection onto metabolites of the human metabolic network at the cell level, as used in Ref. [4].

• The human HI-II-14 interactome. This proteome network was obtained from Ref. [5]. We removed self-loops.

• The Music network. Nodes are chords—sets of musical notes played in a single beat—and connections represent
observed transitions among them in a set of songs, see Ref. [6]. The original network is weighted, directed and
very dense. Hence, we applied the disparity filter [7] with α = 0.01 to obtain a sparser network. Finally, we
kept bidirectional edges only to construct the undirected network.

• The Words network is the network of adjacency between words in Darwin’s book “The Origin of Species”, from
Ref. [8].

• The network of email communication within the Enron company was obtained from Refs. [9, 10].

• The Drosophila network is a functional connectome within the Drosophila melanogaster optic medulla related
to the motion detection circuit, from Ref. [11].

In all cases, we only considered the largest connected components. Table S1 contains their main topological features.

Name Type Nodes N γ β 〈k〉 〈c〉
Internet Technological Autonomous systems 23748 2.17 1.44 4.92 0.61

Metabolic Bio/Cell Metabolites 1436 2.6 1.3 6.57 0.54

Music Language Chords 2476 2.27 1.1 16.66 0.82

Airports Transportation World airports 3397 1.88 1.7 11.32 0.63

Proteome Bio/Cell Proteins 4100 2.25 1.001 6.52 0.09

Words Language Words 7377 2.25 1.01 11.99 0.47

Enron Social/Email Employees 33696 2.66 1.2 10.73 0.70

Drosophila Bio/Connectome Neurons 1770 1.91 1.125 10.01 0.34

TABLE S1: Overview of the considered real-world networks. Topological details of the datasets used.

Fig. 2 in the main paper compares the topological properties of the renormalized networks for three real networks.
We show the equivalent results for the Airports, Proteome, Words, Enron and Drosophila networks in Fig. S1.
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FIG. S1: Self-similarity along the RGN flow. Each row shows the RGN flows of different topological features of the
Airports, Proteome, Words, Enron and Drosophila networks with r = 2. Left: Complementary cumulative distribution of

rescaled degrees k
(l)
res = k(l)/〈k(l)〉. Middle: Local clustering averaged over rescaled-degree classes. The insets show the

normalized average nearest neighbour degree k̄nn,n(k
(l)
res) = k̄nn(k

(l)
res)〈k(l)〉/〈(k(l))2〉. Right: RGN flow of the community

structure; Q(l) stands for the modularities in every layer l, Q(l,0) is the modularity that the community structure in the l layer
induces in the original network, and nMI(l,0) is the normalized mutual information between both partitions. The number of
layers in each system is determined by their original size.
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In Fig. S2, we show the empirical connection probabilities of the eight real-world networks considered in this paper
as well as their renormalized versions.
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FIG. S2: Empirical connection probabilities. Fraction of connected pairs within a given range of χ
(l)
ij for the eight

real-world networks and their renormalized versions. The black curve is the theoretic connection probability.

II. THE GEOMETRIC RENORMALIZATION GROUP

This section contains the calculations related to the theoretical aspects of the geometric renormalization transfor-
mation presented in the main paper. In particular, we show the semigroup structure of the transformation, derive
the corresponding recurrence relations for the renormalization of the S1 model and calculate the flow of the average
degree. We also discuss the connection with statistical mechanics by using the isomorphism between the S1 and the
H2 models and, finally, we include some numerical results regarding the relation between global properties of the
networks generated by the model and the flow of the average degree.

A. The semigroup structure of the coarse-graining step

It is easy to show that the geometric coarse-graining presented in the paper has the semigroup structure. To
this end, we need to see that node i is mapped to the same supernode whether we apply the coarse-graining with
r = r1 first and then a second time with r = r2 or just once with r = r1r2. In the first case, the step with
r = r1 maps i to supernode m = bi/r1c (where bxc represents the integer part of x), and then m is mapped to
n = bm/r2c = bbi/r1c /r2c in the second step. In the second case, i is mapped to supernode s = bi/(r1r2)c. Notice
that s = b(i/r1)/r2c = b(bi/r1c+ α)/r2c = b(m+ α)/r2c, where α = (i mod r1)/r1 < 1. Now,

m+ α

r2
=
m

r2
+
α

r2
=

⌊
m

r2

⌋
+
m mod r2

r2
+
α

r2
, (S1)

so ⌊
m+ α

r2

⌋
=

⌊
m

r2

⌋
⇔ m mod r2

r2
+
α

r2
< 1, (S2)

which is always fulfilled since α < 1 and

m mod r2 + α

r2
≤ r2 − 1 + α

r2
= 1 +

α− 1

r2
< 1. (S3)

Thus, s = n, and node i is mapped to the same supernode in both cases. It follows immediately from this result that
both processes yield the same final link structure.
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B. Selecting long-range connections

As we apply the renormalization transformation, some links are integrated inside the supernodes, so they do not
contribute to the topology of the renormalized network. In Fig. S3, we show that links joining nodes separated a large
angular distance ∆θij require larger values of r to be integrated; in other words, the connections in a renormalized
network represent long-range connections in the original graph.

0 1 2 3 4 5 6 7 8 9

l

0.0

0.1

0.2

0.3

0.4

0.5

〈∆
θ i
j〉/
π

Internet
Metabolic
Music

Airports
Proteome
Words

Drosophila
Enron
Synthetic

FIG. S3: Connection range in renormalized layers. Normalized angular distance 〈∆θij〉 averaged over all links that are
not integrated inside a supernode in layer l with r = 2.

C. Geometric renormalization of the S1 model

In this subsection, we derive the RG equations of the S1 model. In order to simplify the notation, all unprimed
quantities will refer to layer l−1, whereas primed ones will correspond to layer l. Moreover, we consider the particular
case in which all supernodes contain the same number of nodes (r) for simplicity, although the following calculations
are also valid for supernodes of different sizes.

Consider the probability p′ij for two supernodes i and j in layer l to be connected, which is given by the probability
for at least one link between a pair of the nodes within the supernodes in layer l − 1 to exist,

p′ij = 1−
r2∏
e=1

(1− pe) , (S4)

where e runs over all pairs of nodes (m,n) with m in supernode i and n in supernode j. The term pe is the probability
for m and n to be connected in layer l − 1,

pe =
1

1 +
(

R∆θe
µ(κmκn)e

)β . (S5)

Eq. (S4) takes the same functional form as Eq. (S5),

p′ij = 1−
r2∏
e=1

1

1 +
(

R∆θe
µ(κmκn)e

)−β = 1− 1
r2∏
e=1

1 +
(
µ(κmκn)e
R∆θe

)β = 1− 1

1 + Φ′ij
=

1

1 + 1
Φ′ij

(S6)

with

Φ′ij =

r2∑
e=1

(
µ(κmκn)e
R∆θe

)β
+

r2−1∑
e=1

r2∑
f=e+1

(
µ(κmκn)e
R∆θe

)β (
µ(κmκn)f
R∆θf

)β
+ . . . (S7)
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Since the angular distance between the nodes inside each block is generally smaller than the distance between i and
j, all the ∆θe are approximately equal (∆θe ≈ ∆θ), so we can write

Φ′ij ≈
( µ

R∆θ

)β r2∑
e=1

(κmκn)βe +
( µ

R∆θ

)2β r
2−1∑
e=1

r2∑
f=e+1

(κmκn)βe (κmκn)βf + . . . (S8)

The S1 model assumes a uniform density of nodes δ = 1, which means that R = N
2π , whereas µ is a constant

independent of N . Indeed, µ
R � 1, so the first term leads Eq. (S8) in most cases. Thus,

Φ′ij ≈
( µ

R∆θ

)β r2∑
e=1

(κmκn)βe . (S9)

Introducing this result into Eq. (S6),

p′ij ≈
1

1 +
(
R∆θ
µ

)β
1

r2∑
e=1

(κmκn)βe

, (S10)

we see that, in order for the resulting expression to be congruent with the model, we need a set of equations that
transform the parameters according to(

R∆θ

µ

)β
1

r2∑
e=1

(κmκn)βe

=

(
R′∆θ′ij
µ′κ′iκ

′
j

)β′
. (S11)

Let us now assume that the angular coordinate of a supernode is some generalised center of mass of the nodes it
integrates, so the separation between the two renormalised nodes ∆θ′ij is approximately equal to the angular separation

between the nodes that belong to different blocks, i.e. ∆θ′ij ≈ ∆θ; thus, β′ = β. The choice δ = 1 leads to R′ = R
r ,

that is, to the rescaling step. Setting µ′ = µ
r , Eq. (S11) further requires

(
κ′iκ
′
j

)β
=

r2∑
e=1

(κmκn)βe , (S12)

which is fulfilled if

κ′i =

 r∑
j=1

κβj

1/β

. (S13)

The transformation of masses preserves the semigroup structure exactly, since

(κ′′i )r =

 r∑
j=1

(
κ′j
)β1/β

=

 r∑
j=1

r∑
k=1

κβj,k

1/β

= (κ′i)r2 . (S14)

We should require the transformation of angles to preserve it as well. This can be achieved using the following
generalised center of mass

θ′i =


r∑
j=1

(θjκj)
β

r∑
j=1

κβj


1/β

, (S15)

given that

(θ′′i )r =
1

(κ′′i )r

 r∑
j=1

(
θ′jκ
′
j

)β1/β

=
1

(κ′i)r2

 r∑
j=1

(
κ′j
)β 1(

κ′j
)β r∑

k=1

(θj,kκj,k)
β

1/β

= (θ′i)r2 . (S16)
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D. RG flow of the average degree

As discussed in the previous subsection, as we renormalize, we move in the space of realizations of the S1 model,
always keeping the congruency between the network and the hidden metric space, i.e. Eq. (S5). Therefore, we can
use the S1 model to compute the average degree 〈k′〉 of the renormalised networks. According to Ref. [12],

〈k′〉 = C0µ
′〈κ′〉2, (S17)

where C0 does not change as we renormalize. We thus need to compute 〈κ′〉, where κ′ is given by Eq. (S13) and the
original distribution of masses is assumed to be a power-law,

ρ(κ) =
1− γ

κ1−γ
c − κ1−γ

0

κ−γ , κ ∈ [κ0, κc]. (S18)

The strategy to compute 〈κ′〉 is as follows: 1. We define z ≡ κβ and find their distribution ρz(z). 2. We then
calculate ρ̂rz(s) (where ρ̂z(s) is the Laplace transform of ρz(z)); according to the convolution theorem, this is the
Laplace transform of the variable z′ ≡∑r z = κ′β . 3. Finally, we compute 〈κ′〉 as the 1/β-th moment of z′, that is,

〈κ′〉 = 〈z′1/β〉, from ρ̂rz(s).

1. From Eq. (S18),

ρ(κ)dk =
1− γ

κ1−γ
c − κ1−γ

0

κ−γdκ =
1− γ

β
(
κ1−γ
c − κ1−γ

0

)z 1−γ
β −1dz, (S19)

so

ρz(z) =
1− γ

β
(
κ1−γ
c − κ1−γ

0

)z−η, (S20)

where η = γ−1
β + 1.

2. If γ < 2β + 1, η < 3, which means that z′ and, consequently, κ′ are also power-law distributed since the central
limit theorem does not apply (the opposite case corresponds to phase III in Fig. 3C in the paper) [13]. The
Laplace transform of Eq. (S20) is given by

ρ̂z(s) =

κβc∫
κβ0

ρz(z)e
−szdz =

(1− γ)
(

Γ(1− η, sκβ0 )− Γ(1− η, sκβc )
)

β
(
κ1−γ
c − κ1−γ

0

) sη−1, (S21)

where Γ(a, b) is the incomplete gamma function,

Γ(a, b) =

∞∫
b

ta−1e−tdt. (S22)

From this result, it follows that

ρ̂z′(s) =

 (1− γ)
(

Γ(1− η, sκβ0 )− Γ(1− η, sκβc )
)

β
(
κ1−γ
c − κ1−γ

0

) sη−1

r . (S23)

3. We need to compute

〈z′1/β〉 =

∞∫
0

z′1/βρz′(z
′)dz′. (S24)

To do so, consider the integral

I = C ′
∞∫

0

sαρ̂
(n)
z′ (s)ds = C ′

∞∫
0

sα
∞∫

0

(−1)nz′nρz′(z
′)e−sz

′
dz′ds. (S25)
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Taking into account that for α > −1

∞∫
0

sαe−sz
′
ds = z′−1−αΓ(1 + α), (S26)

we see that

I = C ′(−1)nΓ(1 + α)

∞∫
0

z′n−1−αρz′(z
′)dz′. (S27)

Now, setting C ′ = (−1)nΓ(1 + α)−1 and n − 1 − α = 1/β, I = 〈z′1/β〉. However, since α = n − 1 − 1/β > −1
and n ∈ N, the smallest n we can choose is n = 1, so α = −1/β. Finally, we can write

〈κ′〉 = − 1

Γ
(

1− 1
β

) ∞∫
0

s−1/β ρ̂′z′(s)ds, (S28)

where ρ̂z′(s) is given in Eq. (S23).

Particular case r = 2

To start solving Eq. (S28), let us first take the limit of N →∞⇒ κc →∞, which means that ρ̂z(s) becomes

ρ̂z(s) = Csη−1Γ(1− η, sκβ0 ), C =
γ − 1

βκ1−γ
0

. (S29)

Using the same change of variable as in Eq. (S21), we see that

ρ̂′z(s) = −
κβc∫
κβ0

zρz(z)e
−szdz = −Csη−2Γ(2− η, sκβ0 ). (S30)

Let us now evaluate ρ̂′z′(s),

ρ̂′z′(s) = rρ̂r−1
z (s)ρ̂′z(s) = 2ρ̂z(s)ρ̂

′
z(s) = −2C2s2η−3Γ(1− η, sκβ0 )Γ(2− η, sκβ0 ) (S31)

and introduce this result into Eq. (S28),

〈κ′〉 =
2C2

Γ
(

1− 1
β

) ∞∫
0

s2η−3−1/βΓ(1− η, sκβ0 )Γ(2− η, sκβ0 )ds

=
2C2

Γ
(

1− 1
β

) 1

κ
β(2η−2−1/β)
0

∞∫
0

ω2η−3−1/βΓ(1− η, ω)Γ(2− η, ω)dω

= κ0
2(γ − 1)2

β2Γ
(

1− 1
β

) ∞∫
0

ω2η−3−1/βΓ(1− η, ω)Γ(2− η, ω)dω.

(S32)

We thus need to solve an integral of the form

I(ν, s1, s2) =

∞∫
0

xνΓ(s1, x)Γ(s2, x)dx, ν > −1. (S33)
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In our case, ν = 2η − 3− 1/β = (2γ − 3)/β − 1 > −1⇔ γ > 3/2. Integrating by parts,

I(ν, s1, s2) =
1

ν + 1
xν+1Γ(s1, x)Γ(s2, x)

∣∣∣∣∞
0

+
1

ν + 1

∞∫
0

xν+1
(
Γ(s1, x)xs2−1e−x + Γ(s2, x)xs1−1e−x

)
dx

=
1

ν + 1

∞∫
0

(
Γ(s1, x)xν+s2e−x + Γ(s2, x)xν+s1e−x

)
dx.

(S34)

We can find a recurrence relation for the integrals in the last expression,

I ′(α, s) =

∞∫
0

Γ(s, x)xαe−xdx =
1

α+ 1
xα+1Γ(s, x)

∣∣∣∣∞
0

+
1

α+ 1

∞∫
0

xα+1
(
xs−1e−2x + Γ(s, x)e−x

)
dx

=
1

α+ 1

1

2α+s+1
Γ(α+ s+ 1, 2x)

∣∣∣∣∞
0

+
1

α+ 1

∞∫
0

Γ(s, x)xα+1e−xdx

=
1

α+ 1

1

2α+s+1
Γ(α+ s+ 1) +

1

α+ 1
I ′(α+ 1, s).

(S35)

Iterating yields

I ′(α, s) =

∞∑
n=1

1
n∏

n′=1

(α+ n′)

1

2α+s+n
Γ(α+ s+ n) =

∞∑
n=1

Γ(α+ 1)Γ(α+ s+ n)

Γ(α+ n+ 1)2α+s+n
. (S36)

Introducing this result into Eq. (S34),

I(ν, s1, s2) =
1

ν + 1
(I ′(ν + s2, s1) + I ′(ν + s1, s2))

=
1

ν + 1

∞∑
n=1

(
Γ(ν + s2 + 1)Γ(ν + s1 + s2 + n)

Γ(ν + s2 + n+ 1)2ν+s1+s2+n
+

Γ(ν + s1 + 1)Γ(ν + s1 + s2 + n)

Γ(ν + s1 + n+ 1)2ν+s1+s2+n

)

=
1

(ν + 1)2ν+s1+s2

∞∑
n=1

Γ(ν + s1 + s2 + n)

2n

(
Γ(ν + s2 + 1)

Γ(ν + s2 + n+ 1)
+

Γ(ν + s1 + 1)

Γ(ν + s1 + n+ 1)

)
.

(S37)

Finally, Eq. (S32) becomes

〈κ′〉 = κ0
2(γ − 1)2

β2Γ
(

1− 1
β

) ∞∫
0

ω2η−3−1/βΓ(1− η, ω)Γ(2− η, ω)dω

= κ0
2(γ − 1)2

β2Γ
(

1− 1
β

)I(2η − 3− 1/β, 1− η, 2− η)

=
21+ 1

β (γ − 1)2κ0

βΓ
(

1− 1
β

)
(2γ − 3)

∞∑
n=1

Γ
(
n− 1

β

)
2n

 Γ
(
γ−2
β + 1

)
Γ
(
γ−2
β + n+ 1

) +
Γ
(
γ−2
β

)
Γ
(
γ−2
β + n

)
 .

(S38)

Using this result, Eq. (S17) and κ0 = 〈κ〉(γ − 2)/(γ − 1) we can write an expression for the exponent ν (defined in
the paper by the expression 〈k′〉 = rν〈k〉):

ν =
2

ln 2
ln

 21+ 1
β (γ − 1)(γ − 2)

βΓ
(

1− 1
β

)
(2γ − 3)

∞∑
n=1

Γ
(
n− 1

β

)
2n

 Γ
(
γ−2
β + 1

)
Γ
(
γ−2
β + n+ 1

) +
Γ
(
γ−2
β

)
Γ
(
γ−2
β + n

)
− 1. (S39)

The above result is shown in Fig. S4.
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FIG. S4: Connectivity phase diagram. Exact value of ν as a function of β and γ according to Eq. (S39). The exact
solution agrees with the solution in the power-law approximation (see next subsection) for large values of β or γ.

Solution in the power-law approximation

From Eq. (S38), we see that the exact solution for large r can be extremely convoluted, thus making the limit
r → ∞ inaccessible. However, if we consider that ρκ′(κ

′) is a power-law (which is a reasonable approximation if
η < 3, as discussed above), the computation of 〈κ′〉 becomes simpler. Under this assumption, z′ are also power-law
distributed with exponent −η, that is,

ρz′(z
′) = C ′z′−η, C ′ =

γ − 1

βκ′1−γ0

. (S40)

We study two cases separately:

i. 1 < η < 2: In this case, we determine the value of C ′ and, with it, 〈κ′〉 = κ′0
γ−1
γ−2 . If the assumption in Eq. (S40)

is correct, ρ̂z′(s) must behave as [14]

ρ̂z′(s) = 1 + C ′sη−1Γ(1− η), s→ 0+. (S41)

According to Eqs. (S23) and (S29),

ρ̂z′(s) =
[
Csη−1Γ (1− η, sz0)

]r
=

[
Csη−1Γ (1− η)

(
1− (sz0)1−ηe−sz0

∞∑
n=0

(sz0)n

Γ(2− η + n)

)]r

=

[
CΓ (1− η)

(
sη−1 − z1−η

0 e−sz0
∞∑
n=0

(sz0)n

Γ(2− η + n)

)]r

→
[
CΓ (1− η)

(
sη−1 − z1−η

0

∞∑
n=0

(sz0)n

Γ(2− η + n)

)]r
, s→ 0+.

(S42)

In the above expression, we see that the term that does not depend on s is given by the product of the r terms
with n = 0, whereas the term of order sη−1 is given by the sum of the r products of sη−1 with the remaining
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r − 1 terms with n = 0. Thus, we find

ρ̂z′(s) =

[
CΓ (1− η)

(
sη−1 − z1−η

0

∞∑
n=0

(sz0)n

Γ(2− η + n)

)]r

→ CrΓr (1− η)

[
(−1)r

z
r(1−η)
0

Γr(2− η)
+ r(−1)r−1sη−1 z

(r−1)(1−η)
0

Γr−1(2− η)

]

=

(
γ − 1

βκ1−γ
0

)r
Γr (1− η)

[
(−1)r

z
r(1−η)
0

(1− η)rΓr(1− η)
+ r(−1)r−1sη−1 z

(r−1)(1−η)
0

(1− η)r−1Γr−1(1− η)

]

=

(
η − 1

z1−η
0

)r [
z
r(1−η)
0

(η − 1)r
+ rsη−1Γ (1− η)

z
(r−1)(1−η)
0

(η − 1)r−1

]

= 1 + r
η − 1

z1−η
0

sη−1Γ (1− η) .

(S43)

We can now identify C ′ as

C ′ =
γ − 1

βκ′1−γ0

= r
η − 1

z1−η
0

= r
γ − 1

βκ1−γ
0

, (S44)

so

κ′0 = r
1

γ−1κ0 (S45)

and

〈κ′〉 = r
1

γ−1 〈κ〉. (S46)

Finally, plugging this result into Eq. (S17),

〈k′〉 = C0
µ

r
r

2
γ−1 〈κ〉2 = r

2
γ−1−1〈k〉 →


∞ γ < 3

cte. γ = 3

0 γ > 3

(S47)

ii. 2 < η < 3: This case is much simpler, since 〈z〉 and hence 〈z′〉 are finite and can be easily computed. Indeed,
given that 〈z′〉 = r〈z〉, we see that

〈κ′〉 =
γ − 1

γ − 2
κ′0 =

γ − 1

γ − 2
(z′0)

1/β
=
γ − 1

γ − 2

(
η − 2

η − 1
〈z′〉
)1/β

=
γ − 1

γ − 2

(
η − 2

η − 1
r〈z〉

)1/β

=
γ − 1

γ − 2

(
r
η − 2

η − 1

η − 1

η − 2
z0

)1/β

=
γ − 1

γ − 2

(
rκβ0

)1/β

= r1/β〈κ〉.
(S48)

This result and Eq. (S17) together imply

〈k′〉 = C0
µ

r
r2/β〈κ〉2 = r2/β−1〈k〉 →


∞ β < 2

cte. β = 2

0 β > 2

(S49)

Both solutions, Eqs. (S47) and (S49), are equivalent at η = 2, since

η = 2⇒ γ − 1

β
= 1⇒ β = γ − 1. (S50)

Therefore, we can conclude that the network flows towards a fully connected graph if γ < 3 or β < 2. The line γ = 3
and β > 2 or β = 2 and γ > 3 is formed by unstable fixed points, whereas 〈k〉 → 0 if γ > 3 and β > 2. Notice that
this assertion is only valid under the assumption in Eq. (S40), which is not true in general. However, we expect it to
be a good approximation of the flow’s behaviour as r →∞.
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E. Renormalization in D-dimensional similarity space

In this subsection, we detail the RG transformations in the general case of a D-dimensional space, as well as
the effect of the dimensionality of similarity space on the topology of the resulting networks and the distortion of
one-dimensional embeddings.

1. Model, transformations and average degree flow

As shown in [15], the connection probability Eq. (S5) in D dimensions reads

pij =
1

1 +
(

R∆θij
(µκiκj)

1/D

)β , (S51)

where ∆θij is the angular separation between the two positioning vectors associated to the nodes embedded in the
D dimensional sphere of radius R. Notice that the 1/D exponent ensures the proportionality between degrees and
hidden degrees. Consequently, Eq. (S11) becomes

(
R∆θ

µ1/D

)β
1

r2∑
e=1

(κmκn)
β/D
e

=

 R′∆θ′ij(
µ′κ′iκ

′
j

)1/D
β′

. (S52)

Following the same reasoning as in the one-dimensional case, β′ = β. Furthermore, we should also require the density
of nodes to be preserved, which means that R′ = R/r1/D. Hence, setting µ′ = µ/r yields

R′∆θ′

µ′1/D
=
R/r1/D∆θ

(µ/r)1/D
=
R∆θ

µ1/D
, (S53)

so the transformation further requires

(
κ′iκ
′
j

)β/D
=

r2∑
e=1

(κmκn)β/De , (S54)

which is fulfilled by Eqs. (S13) and (S15) with the change β → β/D. Thus, the analysis of the RG flow of the average
degree can be easily generalized by replacing β with β/D in all k′-related quantities.

In the γ-dominated region (now β > D(γ − 1)), 〈κ′〉 does not depend on β, so Eq. (S46) still holds and the average
degree of the renormalized network is

〈k′〉 = C0
µ

r
r

2
γ−1 〈κ〉2 = r

2
γ−1−1〈k〉 →


∞ γ < 3

cte. γ = 3

0 γ > 3

(S55)

In the β-dominated region, on the other hand, 〈κ′〉 becomes 〈κ′〉 = 〈κ〉rD/β , so

〈k′〉 = C0
µ

r
r2D/β〈κ〉2 = r

2D
β −1〈k〉 →


∞ β < 2D

cte. β = 2D

0 β > 2D

(S56)

Both exponents are equal at η = 2, that is, at β = D(γ − 1). Finally, the non-symmetric phase III, in which η > 3,
corresponds to β < 1

2D(γ − 1).
These results show that the dimension of similarity space does not alter the phase diagram qualitatively, but only

quantitatively. However, it is interesting to mention that, as the dimension D increases, the small-world phase occupies
a region with higher β networks. Moreover, the non-symmetric phase can be found for increasingly heterogeneous
networks, that is, for smaller values of γ, at any given value of β.
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2. The dimension of similarity space in real-world networks

Since the model can be considered in any dimension, it seems reasonable to ask whether a one-dimensional similarity-
space representation of real-world networks, for which similarity space could be in general higher-dimensional, suffices.
To answer this question, we address two points: firstly, the high clustering coefficient observed in networks poses an
upper limit on the similarity-space dimension. Secondly, for low-dimensional similarity-space networks, the one-
dimensional embedding provides a faithful representation. We explore these two points in detail in what follows.

As the dimension of a D-sphere increases, the distances between points randomly scattered on its surface become
more homogeneous, as shown in Fig. S5. Consequently, the distances in the connection probability become a constant,
hence making the model degree-dependent only, which yields a zero-clustering behaviour in the thermodynamic limit.
To quantify this effect, we have computed the mean local clustering of the model at zero temperature, β = ∞—for
which the clustering is maximal—, as a function of the dimension for different values of γ. As shown in Fig. S6, for
a typical clustering level c̄ > 0.5, the dimension of similarity space can be, at most, D ≈ 10 (D ≈ 4 for γ = 3). This
is a very important result, as it suggests that, since the original similarity-space dimension must be low in real-world
cases, the distortion introduced by the dimensionality reduction in the one-dimensional similarity-space embedding
process might be small.
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∆θ

0.0
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100-D

FIG. S5: Distances on D-spheres. Every curve corresponds to the distribution of arc-length distances between N = 104

randomly-scattered points on a D-dimensional sphere. As the dimension increases, the distances become more homogeneously
distributed around the mean, 〈∆θ〉 = π/2, hence decreasing the clustering in the model.
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FIG. S6: Clustering coefficient as a function of the dimension and γ. The average clustering corresponds to the mean
local clustering averaged over 100 realizations on networks of size N = 1000; the errorbars, which are smaller than symbol
sizes, represent the standard error of the measurement. The value of µ was adjusted so that the observed average degree was
〈k〉 = 10.0± 0.1 in all networks.

In order to assess the possible effect of the dimensionality reduction, we have generated four networks using the
SD model with the same average degree and clustering coefficient but dimensions D = 1, D = 2, D = 5 and D = 10.
As Fig. S7 shows, their topologies are extremely similar. Next, we embedded these networks on the S1 model and
measured the quality of the mapping by comparing the original connection probabilities and hyperbolic distances to
their counterparts obtained from the embedding (see Fig. S8); although there is some distortion due to the projection
onto a lower-dimensional space, the effect on the connection probabilities is mild. Consequently, the one-dimensional
embedding is able to recover most of the original geometric information. This is further supported by the fact that
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the renormalization procedure yields almost indistinguishable flows when applied to all four networks, as shown in
Fig. S9, where the RGN is performed using the embedding distances only.
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FIG. S7: Single realizations of the SD model. Topological properties of networks generated with the model in different
dimensions. All four networks share the same hidden-degree sequence, while the global parameters µ and β have been adjusted so
that they all have the same average degrees and clustering coefficients. Left: Complementary cumulative degree distributions.
Middle: Degree-dependent clustering spectra. Right: Normalized average nearest neighbours degrees.
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FIG. S8: Effects of dimensionality reduction. Left: Absolute differences between the real connection probabilities
pij,real, that is, the ones with which the networks were generated, and the embedding connection probabilities pij,emb. averaged
over all pairs of nodes. Right: Pearson correlation coefficient between the corresponding hyperbolic distances. Notice that,
even in the case of original dimension D = 1, the embedding process introduces some distortion to the obtained distances
and probabilities. For higher dimensions, the effect of the actual geometric distortion is added; yet, the average error in the
connection probabilities remains small.
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FIG. S9: RGN flow of topological properties. Each row shows the RGN flows of the topological features of the networks
of different dimensions from Fig. S7. For the transformations, only information from the one-dimensional embedding was used.

Left: Complementary cumulative distribution of rescaled degrees k
(l)
res = k(l)/〈k(l)〉. Middle: Local clustering averaged over

rescaled-degree classes. Right: Normalized average nearest neighbour degree k̄nn,n(k
(l)
res) = k̄nn(k

(l)
res)〈k(l)〉/〈(k(l))2〉.

F. Mapping to hyperbolic space and the partition function

In this section, we show how the RGN presented in this work can be described in the formalism of statistical physics.
The S1 model is isomorphic to the H2 model, a purely geometric model in a two-dimensional hyperbolic disk of radius

RH2 = 2 ln

(
2R

µκ2
0

)
, (S57)

where κ0 = min {κi}. By mapping every mass κ to a radial coordinate r according to

r = RH2 − 2 ln
κ

κ0
, (S58)
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the connection probability, Eq. (S5), becomes

pmn =
1

1 + e
β
2 (xmn−RH2 )

, (S59)

where xmn = rm + rn + 2 ln ∆θmn
2 is a good approximation to the hyperbolic distance between two points with

coordinates (rm, θm) and (rn, θn) in the native representation of hyperbolic space. The exact hyperbolic distance dH2

is given by the hyperbolic law of cosines,

dH2 = acosh (cosh rm cosh rn − sinh rm sinh rn cos ∆θmn) . (S60)

Now, let amn = 1 if the link between nodes m and n exists and amn = 0 otherwise; Eq. (S59) can be written as

pmn ≡ P (amn) =
e−β

amn
2 (xmn−RH2 )

1 + e−
β
2 (xmn−RH2 )

, (S61)

which means that, in the H2 model, every pair of nodes represents a fermionic state of energy xmn/2 in the grand-
canonical ensemble with RH2/2 playing the role of the chemical potential. Indeed, since a network can be represented
by the set {amn}, the likelihood of a given network is given by

P ({amn}) =
∏
m<n

e−β
amn

2 (xmn−RH2 )

1 + e−
β
2 (xmn−RH2 )

, (S62)

that is, by the probability of the corresponding microstate of the gas of non-interacting fermions. The partition
function of the system is

Z =
∏
m<n

1∑
amn=0

e−β
amn

2 (xmn−RH2 ) =
∏
m<n

(
1 + e−

β
2 (xmn−RH2 )

)
. (S63)

When we apply the renormalization transformation, every node m (n) is mapped to a supernode i (j). We can
rearrange the terms in the partition function according to such mapping as

Z =

bNr c∏
i=1

r(r−1)
2∏
t=1

(
1 + e−

β
2 (xt−RH2 )

)∏
i<j

r2∏
e=1

(
1 + e−

β
2 (xe−RH2 )

)
. (S64)

The first double product in the above expression corresponds to the partial sum over the links among the nodes within
every supernode i (hence, there are N(r−1)/2 such terms), whereas the second double product represents the partial
sum over the links among nodes in different supernodes i and j; thus, it contains (N2 −Nr)/2 terms. According to
Eqs. (S57) and (S58),

e−
β
2 (xmn−RH2 ) =

(
µκmκn
R∆θmn

)β
, (S65)

so the rightmost term in Eq. (S64) reads

∏
i<j

r2∏
e=1

(
1 + e−

β
2 (xe−RH2 )

)
=
∏
i<j

r2∏
e=1

(
1 +

(
µ(κmκn)e
R∆θe

)β)
=
∏
i<j

(
1 + Φ′ij

)
, (S66)

where Φ′ij is given by Eq. (S7). Using Eq. (S9) and Eq. (S11), which is fulfilled with the RG transformations derived
in Sect. II C, yields

∏
i<j

r2∏
e=1

(
1 + e−

β
2 (xe−RH2 )

)
≈
∏
i<j

1 +
( µ

R∆θ

)β r2∑
e=1

(κmκn)
β
e


=
∏
i<j

1 +

(
µ′κ′iκ

′
j

R′∆θ′ij

)β =
∏
i<j

(
1 + e−

β
2 (x′ij−R

′
H2 )
)

= Z ′.

(S67)
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The leftmost term in Eq. (S64) can be written as

bNr c∏
i=1

r(r−1)
2∏
t=1

(
1 + e−

β
2 (xt−RH2 )

)
=

bNr c∏
i=1

r(r−1)
2∏
t=1

(
1 +

(
µ(κmκn)t
R∆θt

)β)
. (S68)

In the particular case of r = 2, we integrate consecutive nodes separated by a typical angular distance ∆θt ≈ 2π/N .
Hence, R∆θt ≈ 1, so

bNr c∏
i=1

r(r−1)
2∏
t=1

(
1 + e−

β
2 (xt−RH2 )

)
≈ e

bN/2c∑
i=1

ln(1+(µ(κmκn)i)
β) ≈ eN2 〈ln(1+(µκmκn)β)〉. (S69)

Defining

ζ ≡ e〈ln(1+(µκmκn)β)〉 = e
∫

ln(1+(µκmκn)β)ρ(κm)ρ(κn)dκmdκn (S70)

we can write Eq. (S64) as

Z = ζN/2Z ′, (S71)

where Z ′ =
∑
{aij} e

−βH′({aij}).

G. Local vs. global properties

In the S1 model, we impose three parameters, γ, β and 〈κ〉, all three related to local properties of nodes (degree
and clustering). However, the RG flow of observables like the average degree should be related to global properties
of the system; indeed, we would expect two networks with similar average degree flows to exhibit similarities at the
global scale as well, whereas two networks with very different RG trajectories (even in the same phase, i.e., flowing
towards the same fixed point) should be easier to distinguish by looking at their global properties. To check this
hypothesis, we have generated synthetic networks with different values of γ and β and compared the eigenvalues of
both the adjacency and laplacian matrices. The results are shown in Figs. S10, S11 and S12. As we see, the RG
analysis of the model allows us to assess the stability of the global properties of networks against perturbations of
their local ones, and hence the importance of clustering and degree heterogeneity on a given system.
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1FIG. S10: Eigenvalues of adjacency matrices. Every plot represents a histogram of the eigenvalues (divided by
√
〈κ〉) of

the adjacency matrices of 100 synthetic networks of size N = 1000 and 〈κ〉 = 5 for a particular set of values (γ, β). The order
of the plots corresponds to that of the phase diagram Fig. 3C in the paper. Notice how the RG analysis correctly predicts the
dependence of the spectra on γ only on the top-left corner of the figure, as well as the independence on γ on the bottom-right
region.
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1FIG. S11: Eigenvalues of laplacian matrices. Every plot represents a histogram of the eigenvalues (divided by
√
〈κ〉) of

the laplacian matrices of 100 synthetic networks of size N = 1000 and 〈κ〉 = 5 for a particular set of values (γ, β). The order
of the plots corresponds to that of the phase diagram Fig. 3C in the paper. Notice how the RG analysis correctly predicts the
dependence of the spectra on γ only on the top-left corner of the figure, as well as the independence on γ on the bottom-right
region.
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FIG. S12: Diffusion time and synchronization stability. Left: Logarithm of the diffusion time (inverse of the algebraic
connectivity or first non-null eigenvalue of the laplacian λ2) of networks of size N = 1000 and 〈κ〉 = 5 averaged over 100
realizations. Bottom: Logarithm of the quotient λn/λ2 (this quantity is related to the stability of synchronization processes
on networks; it gives the time that the system needs to get back to the stable synchronized state after a perturbation occurred).
In both plots, we can see the similarities with Fig. 3C in the paper.
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III. DOWNSCALED NETWORK REPLICAS
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FIG. S13: Dynamics on the downscaled network replicas. Each row shows the order parameters versus the control
parameters of different dynamical processes on the original and downscaled replicas of the Airports, Proteome, Words, Enron
and Drosophila networks with r = 2, that is, every value of l identifies a network 2l times smaller than the original one. All
points show the results averaged over 100 simulations. Error bars indicate the standard deviations of the order parameters.
Left: Magnetization 〈|m|〉(l) of the Ising model as a function of the inverse temperature 1/T . Middle: Prevalence 〈ρ〉(l) of the

SIS model as a function of the infection rate λ. Right: Coherence 〈r〉(l) of the Kuramoto model as a function of the coupling
strength σ. In all cases, the curves of the smaller-scale replicas are extremely similar to the results obtained on the original
networks.
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IV. MULTISCALE NAVIGATION NETWORKS

This section includes some results showing the topological properties of the coarse-grained for navigation networks;
Fig. S14 shows the complementary cumulative degree distributions, whereas Fig. S15 contains their clustering spectra.
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FIG. S14: Complementary cumulative degree distributions. Every curve represents the complementary cumulative
degree distribution of a given layer in the multiscale navigation shell.
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FIG. S15: Clustering spectra. Every curve represents the clustering spectrum of a given layer in the multiscale navigation
shell.

We also present the empirical connection probabilities of the networks after the coarse-graining for navigation (in
which pairs of nodes are merged together into a supernode only if they are connected) in Fig. S16. Notice that the
congruency with the underlying metric space is preserved even is the sizes of the blocks are different.



22

10−6 10−2 102 106
10−8

10−6

10−4

10−2

100
P

(χ
(l

)
ij

)
Internet

l = 0
l = 1
l = 2

l = 3
l = 4
l = 5

10−6 10−2 102 106
10−8

10−6

10−4

10−2

100 Metabolic

l = 0
l = 1
l = 2

10−6 10−2 102 106
10−8

10−6

10−4

10−2

100 Music

l = 0
l = 1
l = 2

10−6 10−2 102 106
10−8

10−6

10−4

10−2

100 Drosophila

l = 0
l = 1
l = 2

10−6 10−2 102 106

χ
(l)
ij

10−8

10−6

10−4

10−2

100

P
(χ

(l
)

ij
)

Airports

l = 0
l = 1
l = 2

10−6 10−2 102 106

χ
(l)
ij

10−8

10−6

10−4

10−2

100 Proteome

l = 0
l = 1
l = 2

10−6 10−2 102 106

χ
(l)
ij

10−8

10−6

10−4

10−2

100 Words

l = 0
l = 1
l = 2
l = 3

10−6 10−2 102 106

χ
(l)
ij

10−8

10−6

10−4

10−2

100 Enron

l = 0
l = 1
l = 2
l = 3
l = 4

FIG. S16: Empirical connection probabilities. Fraction of connected pairs within a given range of χ
(l)
ij for the eight

real-world networks and their coarse-grained for navigation versions. The black curve is the theoretic connection probability.
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