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I. THE MODEL VS. REAL NETWORKS: THE
AUTONOMOUS SYSTEM LEVEL MAP OF THE
INTERNET AND THE US AIRPORT NETWORK

The model we use in this work is not meant to repro-
duce any particular system but to generate a set of gen-
eral properties, like heterogeneous degree distributions,
high clustering, and a metric structure lying underneath.
Yet, despite its simplistic assumptions, the model gen-
erates graphs that are surprisingly close to some real
networks of interest, in particular the Internet at the
Autonomous System level (AS) [1, 2] and the network
of airline connections among airports within the United
States during 2006 (USAN) [3]. In the case of the In-
ternet, we use two different data sets, the Internet as
viewed by the Border Gateway Protocol (BGP) [1] and
the DIMES project [2]. The BGP (DIMES) network has
a size of N ∼ 17446 (N = 19499) ASs, average degree
〈k〉 = 4.7 (〈k〉 = 5), and average clustering C = 0.41
(C = 0.6). The US Airport Network is composed of
US airports connected by regular flights (with more than
1000 passengers per year) during the year 2006. This re-
sults in a network of N = 599 airports, average degree
〈k〉 ∼ 10.8 and average clustering coefficient C = 0.72.

Figures 1 and 2 show a comparison of the basic topo-
logical properties of these networks with graphs gener-
ated with the model. In the case of the AS map, we use
a truncated power law distribution ρ(κ) ∼ κ−γ , κ < κc

with exponent γ = 2.1 and κc such that the maximum
degree of the network is kc = 2400. For the USAN, we
use γ = 1.6 and a maximum degree kc = 180, as observed
in the real network. As it can be appreciated in both fig-
ures, the matching of the model with the empirical data
is surprisingly good except for very low degree vertices.
This is particularly interesting since we are not enforc-
ing any mechanism to reproduce higher order statistics
like the average nearest neighbours degree k̄nn(k) or the
degree-dependent clustering coefficient c̄(k). This can be
understood as a consequence of the high heterogeneity
of the degree distribution that introduces structural con-
straints in the network [4, 5].

The airport network differs in several ways from our
modelled networks: the distribution of airports in the
geographic space is far from uniform; the airport degree
distribution does not perfectly follow a power law; and it
exhibits a sharp high-degree cut-off. However, the struc-
ture of greedy paths is surprisingly similar to that in our

modelled networks in Fig. 6. The success ratio ps ≈ 0.64
and average length of successful paths τ ≈ 2.1 are also
similar to those in our modelled networks of the corre-
sponding size, clustering, and degree distribution expo-
nent. These similarities indicate that the network navi-
gability characteristics depend on clustering and hetero-
geneity of the airport degree distribution, and less so on
how perfectly it follows a power law.

II. HIERARCHICAL ORGANIZATION OF
MODELED NETWORKS

The routing process in our framework resembles guided
searching for a specific object in a complex collection
of objects. Perhaps the simplest and most general way
to make a complex collection of heterogenous objects
searchable is to classify them in a hierarchical fashion.
By “hierarchical,” we mean that the whole collection is
split into categories (i.e., sets), sub-categories, sub-sub-
categories, and so on. Relationships between categories
form (almost) a tree, whose leaves are individual objects
in the collection [6–9]. Finding an object reduces to the
simpler task of navigating this tree.

k-core decomposition [12, 13] is possibly the most suit-
able generic tool to expose hierarchy within our modeled
networks. The k-core of a network is its maximal sub-
graph such that all the nodes in the subgraph have k
or more connections to other nodes in the subgraph. A
node’s coreness is the maximum k such that the k-core
contains the node but the k+1-core does not. The k-core
structure of a network is a form of hierarchy since a k+1-
core is a subset of a k-core. One can estimate the quality
of this hierarchy using properties of the k-core spectrum,
i.e., the distribution of k-core sizes. If the maximum
node coreness is large and if there is a rich collection of
comparably-sized k-cores with a wide spectrum of k’s,
then this hierarchy is deep and well-developed, making
it potentially more navigable. It is poor, non-navigable
otherwise.

In Fig. 3 we feed real and modeled networks to the
Large Network visualization tool (LaNet-vi) [10] which
utilizes node coreness to visualize the network. Fig. 3
shows that networks with stronger clustering and smaller
exponents of degree distribution possess stronger k-core
hierarchies. These hierarchies are directly related to how
networks are constructed in our model, since nodes with



2

100 101 102 103 104

k

10-6

10-4

10-2

100

P(
k)

AS DIMES
AS BGP
Model γ=2.1

100 101 102 103 104

k

101

102

103

k n
n(
k)

AS DIMES
AS BGP
Model

100 101 102 103 104

k
10-3

10-2

10-1

100

c(
k)

AS DIMES
AS BGP
Model

FIG. 1: Degree distribution P (k), average nearest neigh-
bours’ degree k̄nn(k), and degree-dependent clustering coef-
ficient c̄(k) generated by our model with γ = 2.1 and α = 2
compared to the same metrics for the real Internet map as
seen by BGP data and the DIMES project.

higher κ and, consequently, higher degrees have generally
higher coreness, as we can partially see in Fig. 3.

III. THE ONE-HOP PROPAGATOR OF
GREEDY ROUTING

To derive the greedy-routing propagator in this ap-
pendix, we adopt a slightly more general formalism than
in the main text. Specifically, we assume that nodes
live in a generic metric space H and, at the same time,
have intrinsic attributes unrelated to H. Contrary to
normed spaces or Riemannian manifolds, generic metric
spaces do not admit any coordinates, but we still use
the coordinate-based notations here to simplify the ex-
position below, and denote by x nodes’ coordinates in H
and by ω all their other, non-geometric attributes, such
as their expected degree κ. In other words, hidden vari-
ables x and ω in this general formalism represent some
collections of nodes’ geometric and non-geometric hidden
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FIG. 2: Degree distribution P (k), average nearest neigh-
bours’ degree k̄nn(k), and degree-dependent clustering coeffi-
cient c̄(k) generated by our model with γ = 1.6, α = 5 and a
cut-off at kc = 180 compared to the same metrics for the real
US airport network.

attributes, not just a pair of scalar quantities. Therefore,
integrations over x and ω in what follows stand merely
to denote an appropriate form of summation in each con-
crete case.

As in the main text, we assume that x and ω are inde-
pendent random variables so that the probability density
to find a node with hidden variables (x, ω) is

ρ(x, ω) = δ(x)ρ(ω)/N, (1)

where ρ(ω) is the probability density of the ω variables
and δ(x) is the concentration of nodes in H. The total
number of nodes is

N =
∫
H

δ(x)dx, (2)

and the connection probability between two nodes is an
integrable decreasing function of the hidden distance be-
tween them,

r(x, ω;x′, ω′) = r[d(x,x′)/dc(ω, ω′)], (3)
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FIG. 3: k-core decompositions of real and modeled networks. The first two rows show LaNet-vi [10] network visual-
izations. All nodes are color-coded based on their coreness (right legends) and size-coded based on their degrees (left legends).
Higher-coreness nodes are closer to circle centers. The third row shows the k-core spectrum, i.e., the distribution S(k) of sizes
of node sets with coreness k. The first column depicts two real networks: the AS-level Internet as seen by the Border Gateway
Protocol (BGP) in [1] and the Pretty Good Privacy (PGP) social network from [11]. The rest of the columns show modeled
networks for different values of power-law exponent γ in cases with weak (α = 1.1) and strong (α = 5.0) clustering. The
network size N for all real and modeled cases is approximately 104. Similarity between real networks and modeled networks
with low γ and high α is remarkable.

where dc(ω, ω′) a characteristic distance scale that de-
pends on ω and ω′.

We define the one-step propagator of greedy routing as
the probability G(x′, ω′|x, ω;xt) that the next hop after
a node with hidden variables (x, ω) is a node with hid-
den variables (x′, ω′), given that the final destination is
located at xt.

To further simplify the notations below, we label the
set of variables (x, ω) as a generic hidden variable h and
undo this notation change at the end of the calculations
according to the following rules:

(x, ω) −→ h
ρ(x, ω) −→ ρ(h)

dxdω −→ dh
r(x, ω;x′, ω′) −→ r(h, h′).

(4)

We begin the propagator derivation assuming that a
particular network instance has a configuration given
by {h, ht, h1, · · · , hN−2} ≡ {h, ht; {hj}} with j =
1, · · · , N − 2, where h and ht denote the hidden vari-
ables of the current hop and the destination, respectively.
In this particular network configuration, the probability
that the current node’s next hop is a particular node i
with hidden variable hi is the probability that the cur-
rent node is connected to i but disconnected to all nodes
that are closer to the destination than i,

Prob(i|h, ht; {hj}) = r(h, hi)
N−2∏

j( 6=i)=1

[1− r(h, hj)]
Θ[d(hi,ht)−d(hj ,ht)] , (5)
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FIG. 4: Probability Pup(ω/d1/2, d).

where Θ(·) is the Heaviside step function. Tak-
ing the average over all possible configurations
{h1, · · · , hi−1, hi+1, · · · , hN−2} excluding node i, we ob-
tain

Prob(i|h, ht;hi) = r(h, hi)
(

1− 1
N − 3

k̄(h|hi, ht)
)N−3

,

(6)

where

k̄(h|hi, ht) = (N − 3)
∫

d(hi,ht)<d(h′,ht)

ρ(h′)r(h, h′)dh′

(7)
is the average number of connections between the current
node and nodes closer to the destination than node i,
excluding i and t.

The probability that the next hop has hidden variable
h′, regardless of its label, i.e., index i, is

Prob(h′|h, ht) =
N−2∑
i=1

ρ(h′)Prob(i|h, ht;h′). (8)

In the case of sparse networks, k̄(h|h′, ht) is a finite quan-
tity. Taking the limit of large N , the above expression
simplifies to

Prob(h′|h, ht) = Nρ(h′)r(h, h′)e−k̄(h|h′,ht). (9)

Yet, this equation is not a properly normalized probabil-
ity density function for the variable h′ since node h can
have degree zero with some probability. If we consider
only nodes with degrees greater than zero, then the nor-
malization factor is given by 1 − e−k̄(h). Therefore, the
properly normalized propagator is finally

G(h′|h, ht) =
Nρ(h′)r(h, h′)e−k̄(h|h′,ht)

1− e−k̄(h)
. (10)

We now undo the notation change and express this
propagator in terms of our mixed coordinates:

G(x′, ω′|x, ω;xt) =
δ(x′)ρ(ω′)

1− e−k̄(x,ω)
r

[
d(x,x′)
dc(ω, ω′)

]
e−k̄(x,ω|x′,xt), (11)

with

k̄(x, ω|x′,xt) =
∫

d(x′,xt)>d(y,xt)

dy
∫

dω′δ(y)ρ(ω′)r
[

d(x,y)
dc(ω, ω′)

]
. (12)

In the particular case of the S1 model, we can express
this propagator in terms of relative hidden distances in-
stead of absolute coordinates. Namely, G(d′, ω′|d, ω) is
the probability that an ω-labeled node, e.g., a node with

expected degree κ = ω, at hidden distance d from the
destination has as the next hop an ω′-labeled node at
hidden distance d′ from the destination. After tedious
calculations, the resulting expression reads:
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(13)

where we have defined function

B(z, a, b) ≡ z−a

∫ z

0

ta−1(1 + t)b−1dt, (14)

which is somewhat similar to the incomplete beta func-
tion B(z, a, b) =

∫ z

0
ta−1(1− t)b−1dt.

One of the informative quantities elucidating the struc-
ture of greedy-routing paths is the probability Pup(ω, d)
that the next hop after an ω-labeled node at distance d
from the destination has a higher value of ω. The greedy-
routing propagator defines this probability as

Pup(ω, d) =
∫

ω′≥ω

dω′
∫

d′<d

dd′G(d′, ω′|d, ω), (15)

and we show Pup(ω/d1/2, d) in Fig. 4. We see that the
proper scaling of ωc ∼ d1/2, where ωc is the critical
value of ω above which Pup(ω, d) quickly drops to zero,
is present only when clustering is strong. Furthermore,
Pup(ω, d) is an increasing function of ω for small ω’s only
when the degree distribution exponent γ is close to 2.
A combination of these two effects guarantees that the
layout of greedy routes properly adapts to increasing dis-
tances or graph sizes, thus making networks with strong
clustering and γ’s greater than but close to 2 navigable.
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