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The latent space approach to complex networks has revealed fundamental principles and symme-
tries, enabling geometric methods. However, the conditions under which network topology implies
geometricity remain unclear. We provide a mathematical proof and empirical evidence showing
that the multiscale self-similarity of complex networks is a crucial factor in implying latent geom-
etry. Using degree-thresholding renormalization, we prove that any random scale-free graph in a
d-dimensional homogeneous and isotropic manifold is self-similar when interactions are pairwise.
Hence, both clustering and self-similarity are required to imply geometricity. Our findings highlight
that correlated links can lead to finite clustering without self-similarity, and therefore without inher-
ent latent geometry. The implications are significant for network mapping and ensemble equivalence
between graphs and continuous spaces.

Network geometry [1] has emerged as a key paradigm
in network science to model real-world networks at both
local and global scales. Moreover, it provides a robust
framework to conceptualize problems in physics related
to ensemble equivalence between graphs of discrete units
and emerging continuous space or spacetimes, includ-
ing approaches to quantum gravity [2] and the study
of causal sets [3–5]. In particular, the latent geome-
try approach [6]—where nodes connect with a likelihood
that decreases with distance in a hidden metric space—
explains essential network features [7]. Notably, this ap-
proach has revealed that real networks exhibit an ef-
fective hyperbolic geometry [8, 9], unifying the small-
world property with heterogeneous degree distributions
and clustering under a single mechanism.

The key property that connects the hyperbolic geom-
etry of a network and its topology is clustering, the ten-
dency of nodes to share neighbors [10], with triangles in
the network structure induced as a reflection of the trian-
gle inequality in the metric space. This raises the intrigu-
ing question of whether clustering implies geometricity.
Previous work [11] suggested that clustering implies ge-
ometry by showing that random graphs with homoge-
neous degrees and clustering are equivalent to random
geometric graphs. However, this holds only under cer-
tain conditions. Furthermore, network models without
any inherent geometry, like the configuration model, can
still contain large amounts of triangles. The limitations
of using triangle counts to detect geometry led to the
development of a weighting scheme designed to deter-
mine reliably whether clustering is induced by hyperbolic
spaces and persists in the thermodynamic limit, which
requires system size scaling [12].
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In this work, we unveil the crucial role of network
symmetries to elucidate the conditions under which net-
work topology implies geometricity. We used the degree-
threhsolding renormalization (DTR) method [13], which
generates a nested hierarchy of subgraphs by progres-
sively filtering out nodes with degree below a threshold,
to reveal multiscale self-similarity. DTR self-similarity
has been observed in many real-world networks and has
been explained by the renormalizability of the geometric
S1 model [13]. Self-similarity of complex networks has
also been explored from other perspectives [14–18].
Below, we prove that any geometric random graph in a

homogeneous and isotropic manifold with any curvature
and any dimension is self-similar under DTR, provided
nodes have a scale-free degree distribution and pairwise
interactions. Therefore, non-self-similar networks can-
not be geometric. We found that some models with fi-
nite clustering are non-self-similar under DTR, thus non-
geometric. Hence, while geometricity always implies clus-
tering and self-similarity, the reverse is not true; however,
the absence of clustering or self-similarity implies non-
geometricity, see Fig. (1). Moreover, real networks can
be classified according to their self-similarity and clus-
tering levels, providing insights into their potential geo-
metricity. Thus, clustering, geometry, and self-similarity
interplay in a non-trivial way in complex networks.

FIG. 1: Logic consequence relationships between
geometricity, clustering, and self-similarity for geometric
random graphs in homogeneous and isotropic spaces.

We start our proof by considering the thermodynamic
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limit of a homogeneous Poisson point process with den-
sity δ in a Euclidean space of dimension d. The same is
obtained for homogeneous and isotropic hyperbolic and
spherical manifolds; the proofs for negative and posi-
tive curvature are provided in Appendices A and B,
respectively. Note that the proof for spherical mani-
folds applies, in particular, to the Sd geometric network
model [13] and, thus, to its hyperbolic formulation the
Hd+1 model [19, 20], where homogeneous nodes are dis-
tributed heterogeneously in the (d + 1)-dimensional hy-
perbolic space. In contrast, the proof for hyperbolic man-
ifolds refers to heterogeneous nodes distributed homoge-
neously over all the d-dimensional hyperbolic space.

Such a space conceptualizes a similarity space, in which
closeness reflects how similar nodes are and determines
their likelihood to form connections. Furthermore, we as-
sume that each node has a popularity attribute, indepen-
dent of its position in the space, ultimately accounting
for its number of neighbors in the network. We repre-
sent popularity by a hidden variable h (a positive real
number), distributed as ρ(h). Suppose now that interac-
tions are pairwise, such that the connection probability
between a pair of nodes i and j with hidden variables hi

and hj and separated by a distance xij takes the form

pij = f

(
xij

hihj

)
. (1)

We do not impose any particular form to the function f(·)
other than being integrable in Rd. As we show below,
this implies that the model generates sparse networks
without the need to introduce a size dependence on the
connection probability. Since clustering is defined as the
probability that two nodes that share a common neighbor
are connected, it is a function of pij and must be finite
in the thermodynamic limit. This defines our ensemble
of random geometric graphs G.
In this setting, the expected degree of node i is simply

given by k̄(hi) =
∑

j ̸=i pij . However, since the space is
homogeneous and isotropic, and the hidden variable h is
independent of space, we can place node i at the origin
of coordinates so that xij becomes the radial distance
between the nodes in spherical coordinates. Then, taking
the continuum limit,

k̄(hi) = Sd−1δ

ˆ
dhjρ(hj)

ˆ
dxijx

d−1
ij f

(
xij

hihj

)
, (2)

where we have already integrated the angular part and
Sd−1 is the volume of the (d − 1)-sphere. A simple
change of variables leads to k̄(hi) = δId⟨hd⟩hd

i , where
Id ≡ Sd−1

´∞
0

f(x)xd−1dx, so that the average degree is

⟨k⟩ = δId⟨hd⟩2. (3)

As discussed earlier, the average degree is constant –
and so the network is sparse– as long as the integral
Id is bounded. Hereafter, we constraint the distribu-

tion of hidden variables h to be scale-free with ρ(h) =

(γ̃ − 1)h
(γ̃−1)
0 h−γ̃ , h ≥ h0 and γ̃ > d.

We are now interested in the properties of subgraphs
obtained after applying the DTR procedure to networks
generated by the ensemble G. Given a graph G ∈ G, we
obtain a subgraph GT by removing all nodes with hidden
variable h0 ≤ h ≤ hT from G, defining the ensemble GT .
Since we are truncating a power-law distribution from be-
low, the hidden variables of nodes in GT are also power-
law distributed with the same exponent γ̃ but starting at
hT instead of h0. Hence, δT /δ = limN→∞ NT /N , where
N and NT are the sizes of the original network and the
subgraph. Since the popularity dimension encoded in the
hidden variable h is uncorrelated with the position in the
metric space, the ensemble GT is the same as G in the
thermodynamic limit, with the only difference that the
density of the Poisson point process δT and the average
⟨hd⟩T are rescaled. Hence, the ensemble G is statistically
invariant under DTR and it contains an infinite hierar-
chy of nested subgraphs belonging to the same ensemble.
The only relevant observable is the average degree, which
may change in the DTR flow. Its renormalized value is
obtained from Eq. (3), and reads

⟨k⟩T = ⟨k⟩
(

δ

δT

) 3−γ
γ−1

, (4)

where we have used

δT = δ

(
h0

hT

)(γ̃−1)

, ⟨hd⟩T = ⟨hd⟩
(
hT

h0

)d

, (5)

and the definition of the expected degree of node i, which
is proportional to hd as κi ≡ ⟨k⟩hd

i /⟨hd⟩. This gives
⟨κ⟩ = ⟨k⟩, and κ power-law distributed with an exponent
γ = 1 + (γ̃ − 1)/d. Since κ is a monotonically increasing
function of h, thresholding by hT is equivalent to thresh-
olding by κT .
We can analyze the DTR flow of the average degree as a

function of the relative size of GT with respect to the size
of G. Notice that it is independent of the dimension. For
scale-free networks with 2 < γ < 3, the average degree of
subgraphsGT grows as one goes deeper into the hierarchy
of subgraphs, while for γ = 3 it remains stable, and for
γ > 3 it decreases, independently of the dimension.
Hence, we have demonstrated that a geometric random

graph with pairwise interactions and a scale-free degree
distribution defined in a Euclidean metric space of any
dimension is necessarily self-similar under DTR and the
only property that may change in the flow is the av-
erage degree. Therefore, if a network does not exhibit
self-similarity across the DTR hierarchy of subgraphs, it
cannot be geometric.
We analyzed the DTR self-similarity of various net-

work models with different clustering profiles to under-
stand their geometricity. The models considered are
the Configuration Model (CM) [21, 22], the geometric
soft configuration model or S1 model [13], the clique-
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FIG. 2: Rescaled clustering coefficient as a function of rescaled degree in networks with β = 1.5, ⟨k⟩ = 10 and
N = 50, 000. The insets illustrate the average clustering coefficient as a function of kT . The shaded areas represent
two-σ intervals around the mean, calculated from 10 realizations of each model. The values of ϵ2c for each model are:

0.08 for S1, 0.87 for the CB model, 6.05 for MR− ck, 5.76 for MR− c, and 0.16 for the CM model.

based model (CB) [23], and two versions of the maxi-
mal randomization model (MR) [24], named MR − ck
and MR− c, applied to a seed network with a given de-
gree distribution. The CM generates graphs with a fixed
degree distribution and no clustering in large networks.
The other models also have a fixed degree distribution
but produce graphs with finite clustering in the thermo-
dynamic limit. The S1 model maximizes entropy while
maintaining a given degree distribution and clustering
level [25]. The CB achieves clustering by producing dis-
joint cliques connected by extra links. The MR− ck and
the MR − c tune the clustering spectrum and average
clustering coefficient, respectively, by rewiring network
connections to achieve target clustering levels. The CM
and S1 are pairwise, meaning the connection likelihood
between two nodes is independent of other nodes, while
the CB, MR− ck, and MR− c are not. See Table I, and
more details on the models in Appendix C.

We generated synthetic networks with the described
models and studied the change of their structural prop-
erties in the DTR flow. For each network, we applied the
degree thesholding method to produce a nested hierarchy
of subgraphs. Since all networks had the same degree dis-
tributions, the threshold values kT were fixed to prede-
fined levels, {2, 5, 10, 20, 50}, ensuring consistency in the
analysis across different network models. For each sub-
graph, we measured the degree distribution, the average
nearest-neighbors degree, and the clustering coefficient as
functions of the degrees rescaled by the average degree
of the corresponding subgraph kres = k/ ⟨k(kT )⟩. Multi-
scale self-similarity is denoted by overlapping curves for
the different subgraphs in the DTR flow, while spread
curves denote scale-dependent behavior.

Fig. 2 shows the behavior of the clustering coefficient.
The S1 and CM models display self-similarity, both MR
models and the CM are clearly non-self-similar, and the

CB model shows an intermediate behavior that could be
named quasi-self-similar. According to our proof, the
lack of self-similarity of MR − ck and MR − c implies
that they lack a latent geometry, even if they generate
high clustering. Interestingly, the peculiar behavior of
MR − c is indicative of a core-periphery structure and
double percolation phenomena explored in [26]. A de-
tailed analysis of synthetic networks for additional pa-
rameter values for β and γ are in Appendix. D, (Figs. 8,
9), where we also report other structural properties, in-
cluding the complementary cumulative degree distribu-
tion (Figs. 4, 5) and the average nearest-neighbor degree
function (Figs 6, 7) which display congruent behaviors.
Our conclusions about the self-similarity and geometric-
ity of the models are summarized in Table I.

TABLE I: Properties of network models.

Model Pairwise Clustering Self-Similarity Geometric

S1 Yes Yes Yes Yes
CB No Yes No No
MR− ck No Yes No No
MR− c No Yes No No
CM Yes No Yes No

We also analyzed real-world networks using the same
methodology. Their description and structural proper-
ties are reported in Appendix F and Table III. Due to
finite-size effects and varying degree distributions, val-
ues for kT were chosen in [2, kmax

T ] for every network in
enough number to ensure adequate resolution, where the
maximum kmax

T was determined by taking the maximum
value of the average degree in the DTR flow (see Fig. 10
in Appendix E). In Fig. 3-(a), we display the DTR flow
of the structural properties of two real networks. The
curves of Fb-Friends (top row) overlap, suggesting simi-
lar structure of the renormalized networks. In contrast,
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for PPI-rat (bottom row), the structural properties vary
across different subgraphs. In Appendix G, we show the
structural properties of all the real-world networks an-
alyzed here, classified as self-similar (Figs. 11, 12, 13),
quasi-self-similar (Fig. 14) and non-self-similar (Fig. 15).

b)

a)

FIG. 3: Geometricity of real networks. (a)
Complementary cumulative degree distribution, average
nearest-neighbors’ degree, and clustering spectrum as

functions of the rescaled degree for a self-similar
network (top) and a non-self-similar (bottom) network.

Insets show the average clustering vs. kT . (b)
Distribution of ϵ2Max values for real networks, sorted in
ascending order. The three classification regions are:
self-similar (purple, ϵ2Max < 0.4), quasi-self-similar

(green, 0.4 ≤ ϵ2Max < 1), and non-self-similar (yellow,
ϵ2Max ≥ 1). Black dashed lines highlight trends. The

value of β of every network is displayed in parenthesis.

Fig. 3-(b) displays the classification of real networks
as self-similar, quasi-self-similar, or non-self-similar, see
also the Sankey diagram in Fig. 16 of Appendix G.
This classification is based on an ϵ2-Test, which calcu-
lates the maximum difference ϵ2Max between the curves
of the original network and its subgraphs in the range of
rescaled degrees common to both, computed as ϵ2Max =
Max(ϵ2CCD, ϵ2knn, ϵ

2
c). The values for the the three struc-

tural properties were obtained by averaging the squared
relative differences between the corresponding curves of
the original network and the subgraphs. For more details,
refer to the algorithm in Appendix E. In Fig. 3-(b), net-
works are arranged in ascending order along the x-axis
based by increasing ϵ2Max. The curve shows three dis-
tinct regions: low values represent self-similar networks,
which exhibit a gradual increase with a very smooth
slope, a moderate increase marks quasi-self-similar net-
works, and a sharp rise indicates non-self-similar net-
works. Based on this, networks are categorized as self-

similar (ϵ2Max < 0.4), quasi-self-similar (0.4 ≤ ϵ2Max < 1),
and non-self-similar (ϵ2Max ≥ 1). According to these
bounds, Fb-Friends (ϵ2Max = 0.12) is self-similar, while
PPI-rat (ϵ2Max = 6.27) is non-self-similar. This scheme
is also applicable to synthetic networks, correctly clas-
sifying S1 and CM as self-similar, CB as quasi-self-
similar, and the two versions of the MR-Model as non-
self-similar, see values reported in the caption of Fig. 2.

For a consistency test, we calculated the level of cou-
pling between the topology of the networks and the hy-
perbolic two-dimensional latent space of the S1 model.
This coupling is quantified by the parameter β, which
controls the level of clustering in the model and can
be estimated using an extended version of the Mercator
embedding tool capable of handling both strongly and
weakly geometric networks [27]. The embedding adjusts
the coordinates of nodes in the latent space and infers
the parameters such that the observed topology of the
network is best reproduced by synthetic networks of the
model.

The β values for real networks, shown in Fig. 3-(b) and
Fig. 16, indicate that the absence of DTR self-similarity
implies non-geometricity. The results reveal that non-
self-similar networks have β < 1, categorizing them
as either non-geometric (β ≲ 0.5) or quasi-geometric
(0.5 ≲ β < 1). Geometric networks ( β > 1) are self-
similar, except for GMP-Drosophila, which is quasi-self-
similar with β near the critical value βc = 1. The average
β values of self-similar, quasi-self-similar, and non-self-
similar networks are 1.36, 0.69, and 0.35, respectively.
Table III in Appendix G shows that geometric networks
with β > 1 have high clustering coefficients. However,
as noted in [27], networks in the quasi-geometric and
non-geometric regions, where topology couples weakly
wtih the underlying metric space, exhibit clustering co-
efficients that tends to zero in the thermodynamic limit.
Despite this, clustering decay is slow, especially in the
quasi-geometric regime, so finite systems may still retain
significant clustering. In conclusion, networks that fit
a geometric description are self-similar and highly clus-
tered. However, self-similar networks are not always ge-
ometric, and non-self-similar networks tend to be weakly
geometric or incompatible with a geometric description.

To conclude, we used DTR to elucidate the relation
between clustering, geometry, and self-similarity. We
demonstrated that any geometric random graph in a ho-
mogeneous and isotropic manifold (with zero, positive, or
negative curvature) of any dimension is self-similar under
DTR, when nodes have a scale-free degree distribution
and the interactions are pairwise. Therefore, non-self-
similar networks cannot be geometric. While geometric-
ity always implies both clustering and self-similarity,
neither alone is sufficient to imply geometricity. We
found that some network models with finite clustering
are non-self-similar under DTR and must therefore be
non-geometric. These findings seem to contradict [11].
However, this contradiction is only apparent, highlight-
ing that clustering implies latent geometry only when
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interactions are pairwise independent. Correlated links
can result in finite clustering without inherent latent ge-
ometricity. Moreover, real networks can be classified by
their self-similarity and clustering, which allows us assess
their geometricity when both properties are present.

Our work unveils how the existence of multiscale sym-
metries in networks helps in delimiting network geometry.
If the conditions are met, a myriad of downstream tasks
based on network maps becomes possible and meaningful
for networks. The implications are far-reaching and im-
portant for any problem related to ensemble equivalence
between graphs and continuous spaces.
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Appendix A: Proof of the self-similarity of random geometric graphs in hyperbolic geometry

Let us consider the d-dimensional hyperbolic space with radius of curvature R, Hd, where the square of the line
element is defined as

ds2 = dx2 +R2 sinh2
( x
R

)
dΩ2

d−1, (A1)

and dΩ2
d−1 is the squared line element of a (d− 1)-sphere of unit radius. Thus, x ∈ (0,∞) is the hyperbolic distance

between a point at the origin of coordinates and the set of points with fixed angular coordinates on the (d−1)-sphere.
Therefore, the volume element is

dV = Rd−1 sinhd−1
( x
R

)
dx dΩd−1. (A2)

We now define a Poisson point process on Hd at density δ. This implies that the expected number of points within the
volume element is simply δdV . Using this Poisson point process, we define a random geometric graph in the following
way. We identify each point as a node in the graph and endow each node with a hidden variable h drawn from the
distribution ρ(h), independently of the position of the node in Hd. Then, a pair of nodes with hidden variables h and
h′, separated by the hyperbolic distance x, gets connected with probability

p = f

(
1

hh′

ˆ x
R

0

sinhd−1 zdz

)
, (A3)

where 0 ≤ f(·) ≤ 1 is an arbitrary but integrable function of its argument. Notice that the argument of function f is
a monotonically increasing function of the hyperbolic distance. Thus, Eq. (A3) represents the most general class of
heterogeneous random geometric graphs with pairwise interactions in hyperbolic geometry .

Since Hd is a homogeneous and isotropic space, all nodes in the graph are geometrically equivalent and are only
distinguished by their hidden variables h. Let us then consider a node at the origin of coordinates with hidden variable
h and compute its expected degree k̄(h) as

k̄(h) = δRd−1Sd−1

ˆ
ρ(h′)dh′

ˆ ∞

0

sinhd−1
( x
R

)
f

(
1

hh′

ˆ x
R

0

sinhd−1 zdz

)
dx, (A4)

where Sd−1 is the volume of the (d− 1)-sphere. By making the change of variables

t =
1

hh′

ˆ x
R

0

sinhd−1 zdz, (A5)

we obtain

k̄(h) = δRdSd−1I⟨h⟩h, with I ≡
ˆ ∞

0

f (t) dt. (A6)

We then see that the hidden variable h is proportional to the expected degree of the node, so the degree distribution
is determined by the distribution ρ(h). The average degree is then

⟨k⟩ = δRdSd−1I⟨h⟩2. (A7)

We are interested in scale-free networks. Thus, we choose h to be power-law distributed as

ρ(h) = (γ − 1)hγ−1
0 h−γ , with h ≥ h0,

so that ⟨h⟩ = (γ − 1)h0/(γ − 2).

Now, we apply the DTR transformation to the hidden variable and decimate the network by removing all nodes
with hidden variables in the range h0 < h < hT . By doing so, the remaining nodes are also power-law distributed,
but with hidden variables starting at hT instead of h0, so that their average is

⟨h⟩T =
hT

h0
⟨h⟩. (A8)
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Furthermore, the relative size of the network after decimation compared to the original network is simply given by

NT

N
=

δT
δ

=

(
h0

hT

)γ−1

. (A9)

Therefore, the subgraph obtained after decimation is a Poisson point process on Hd at density δT and with hidden
variables power-law distributed with exponent γ and average ⟨h⟩T . The subgraph is then a realization of the same
ensemble as the original network, with the only difference being that the average degree is given by

⟨k⟩T = ⟨k⟩
(

N

NT

) 3−γ
γ−1

, (A10)

just as in the Euclidean case.

Appendix B: Proof of the self-similarity of random geometric graphs in spherical geometry

We now turn to geometries with constant positive curvature. Let us consider the d-dimensional spherical space
with radius of curvature R, Sd, where the square of the line element is

ds2 = dx2 +R2 sin2
( x
R

)
dΩ2

d−1, (B1)

and dΩ2
d−1 is the squared line element of a (d− 1)-sphere of unit radius. Thus, x ∈ (0, πR) is the spherical distance

between the origin of coordinates and the set of points with fixed angular coordinates on the (d−1)-sphere. Therefore,
the volume element is

dV = Rd−1 sind−1
( x
R

)
dx dΩd−1. (B2)

A key difference between spherical and hyperbolic geometries is that the former are compact manifolds with a finite
volume given by

Vtot =
2π

d+1
2

Γ
(
d+1
2

)Rd. (B3)

Thus, if we define a Poisson point process on Sd at density δ, the expected number of nodes in the graph is given by

N =
2π

d+1
2

Γ
(
d+1
2

)δRd. (B4)

This means that, to take the thermodynamic limit, we can either let R ≫ 1 while keeping δ constant or, alternatively,
keep R fixed and let δ ≫ 1 or, in fact, any other combination that leads to δRd ≫ 1. As in the hyperbolic case, we
endow each node with a hidden variable h drawn from the distribution ρ(h), independently of the node’s position in
Sd. Then, a pair of nodes with hidden variables h and h′, separated by the spherical distance x, are connected with
probability

p = f

(
δRd

hh′

ˆ x
R

0

sind−1 z dz

)
, (B5)

where f(·) is an arbitrary but integrable function. Notice that, contrary to the hyperbolic case, we include an explicit
dependence in the connection probability on the term δRd, which is proportional to the system size. This choice is
taken so that the model defines an ensemble of sparse networks in the thermodynamic limit. Since function f(·) is any
integrable function of its argument, Eq. (B5) represents the most general class of heterogeneous random geometric
sparse graphs with pairwise interactions on Sd.

Since Sd is a homogeneous and isotropic space, all nodes in the graph are geometrically equivalent and differ only
by their hidden variables h. Let us then consider a node at the origin with hidden variable h and compute its expected
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degree k̄(h) as

k̄(h) = δRd−1Sd−1

ˆ
ρ(h′) dh′

ˆ πR

0

sind−1
( x
R

)
f

(
δRd

hh′

ˆ x
R

0

sind−1 z dz

)
dx. (B6)

By making the change of variables

t =
δRd

hh′

ˆ x
R

0

sind−1 z dz, (B7)

we obtain

k̄(h) = Sd−1 h

ˆ
ρ(h′)h′ I(h, h′), with I(h, h′) ≡

ˆ αdδRd

hh′

0

f
(
t
)
dt, (B8)

and αd =. In the limit of very large networks, δRd ≫ 1, and so the integral I(h, h′) becomes a constant. Thus, in
this limit we can write

k̄(h) ≈ Sd−1 h I ⟨h⟩, with I ≡
ˆ ∞

0

f
(
t
)
dt. (B9)

Again, we see that h is simply proportional to the expected degree and ⟨k⟩ = Sd−1 I ⟨h⟩2. As in the hyperbolic case,
we are interested in scale-free networks, so that we consider h > h0 to be power-law distributed with exponent γ.
Now, we apply the DTR transformation to the hidden variable and decimate the network by removing all nodes with

hidden variables in the range h0 < h < hT . By doing so, the remaining nodes also follow a power-law distribution,
but with hidden variables starting at hT instead of h0, such that their average is given by Eq. (A8). Similarly, the
relation between the size and density of the subgraph and the corresponding quantities of the original network is also
given by Eq. (A9). The connection probability between nodes in the subgraph remains the same as in the original
network, thus retaining its explicit dependence on δ. However, the density of nodes in the subgraph is δT . Therefore,
the average degree in the subgraph is given by

⟨k⟩T =
δT
δ
Sd−1 I ⟨h⟩2T . (B10)

Combining this result with Eqs. (A8) and (A9), we obtain

⟨k⟩T = ⟨k⟩
(

N

NT

) 3−γ
γ−1

, (B11)

which is, once again, the same as in the Euclidean case.

Appendix C: Random Graph Models:

1. Clique-based Model (CB):

The clique-based model (CB) [23], also referred to as the Gleeson model, is a network model designed to replicate
both the degree distribution and clustering properties commonly found in real-world networks. The CB model is
governed by a joint probability distribution, γ(k, c), which indicates the probability that a randomly chosen node has
degree k and belongs to a clique of size c, with k ≥ c− 1. Here, k− c+1 represents the number of external links that
are connected to nodes outside the clique. After assigning each node to a single c-clique, nodes within each clique
form super-nodes, and their external link stubs are randomly connected together using the configuration model. This
approach allows for both local clustering and long-range interactions across the network.

The CB model can closely approximate the structural characteristics of real-world networks. However, as it starts
from cliques rather than individual nodes, the number of nodes and their degrees may not be strictly predetermined,
leading to small discrepancies between the expected and actual properties in finite networks. Despite these varia-
tions, the CB model remains a valuable tool for simulating networks with high clustering and heterogeneous degree
distributions.
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2. Maximally Random model (MR model):

The Maximally Random model (MR) [24] is a network model designed to realistically capture clustering while
imposing minimal constraints. The MR model preserves the degree distribution and clustering coefficient for each
degree level MR-ck or the average clustering coefficient of the entire network MR-c by employing an optimization
approach based on a specific Hamiltonian. This Hamiltonian function measures the difference between the model’s
clustering and a target clustering coefficient, either at each degree level or across the whole network, allowing the
model to control clustering levels while maintaining network randomness. A Metropolis-Hastings rewiring process and
simulated annealing are used to minimize clustering deviations while keeping the degree sequence fixed. Consequently,
the MR model generates clustered networks that closely resemble real-world networks in terms of clustering levels
without enforcing an artificially ordered or modular structure.

3. S1 model:

The S1 model [7, 13] is a geometric model in a latent similarity metric space that generates synthetic networks
with realistic properties, including high clustering [8, 25, 28–30], heterogeneous degree distributions [8, 13, 28], self-
similarity [13], small-worldness [31–33], among others. In the S1 model, each node is characterized by two hidden
variables, (κ, θ). The parameter κ indicates the expected degree of the node, reflecting its popularity, while θ represents
its angular position on a one-dimensional sphere, which abstracts the similarity space, with the radius proportional
to the total number of nodes. The connection probability between two nodes follows a gravity-like law: nodes that
are farther apart in similarity space are less likely to connect, whereas nodes with higher popularity are more likely
to form connections. The parameter β, which is the inverse of temperature, controls the level of clustering. At the
critical value βc = 1, the system transitions from a high-clustering regime at high β to a low-clustering regime at
low β [13]. It also regulates the coupling strength between the similarity space and the topology through the triangle
inequality.

Appendix D: Experimental Analysis of synthetic networks

In the following, we analyze the degree-thresholding renormalization (DTR) self-similarity of network models to
assess their geometricity. Synthetic networks were initially generated using the S1 model with a total of N = 50000
nodes and varying parameter values for β and γ, while keeping the average degree fixed at ⟨k⟩ = 10. These networks
were subsequently randomized using random graph models, including the CB, MR, and CM models.

Figs. 4 and 5 show the complementary cumulative degree distribution as a function of the rescaled degree kres in
DTR flows for synthetic networks generated by the aforementioned models, with β set to 1.5 and 3, respectively.
Figs. 6 and 7 highlight the average nearest-neighbor degree as a function of rescaled degree. Finally, Figs. 8 and
9 present the clustering spectrum as a function of rescaled degree, with the insets showing the average clustering
coefficient as a function of kT . It is evident from these figures, particularly Figs. 8 and 9, that the S1 and CM models
exhibit self-similarity, the CB model demonstrates quasi-self-similarity, and both the MR − ck and MR − c models
are non-self-similar.

Appendix E: ϵ2-test

In order to classify networks as self-similar, quasi-self-similar, or non-self-similar, we measure variations in their
structural properties in the DTR flows. In DTR, nodes with degree k ≤ kT are removed from the given network to
generate a hierarchy of its subgraphs. We then quantify the variations in the fundamental structural properties in the
DTR flows, including the complementary cumulative degree distribution (CCD), the average nearest-neighbor degree
function (knn), and the clustering spectrum (c(k)).
Algorithm 1 outlines the steps of the ϵ2-test, which computes ϵ2 values as the average squared relative difference

between the curves representing structural properties of the original and renormalized networks. Based on the max-
imum value of ϵ2 (ϵ2Max), the test categorizes networks into three types: networks with smaller ϵ2Max are classified as
self-similar, moderate values indicate quasi-self-similarity, and larger values suggest non-self-similarity. The threshold
values for this classification networks are determined by analyzing ϵ2Max values computed for a variety of real-world
networks, as shown in Fig. 3-(b). These values are sorted in ascending order and plotted, forming a curve that reveals
three distinct regions: low values represent self-similar networks, which exhibit a gradual increase with a very smooth
slope, a moderate increase marks quasi-self-similar networks, and a sharp rise indicates non-self-similar networks.
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FIG. 4: The complementary cumulative degree distribution of the synthetic networks in the DTR flow as a function
of the degree rescaled by the average degree in the corresponding subgraph, kres = k/⟨k(kT )⟩. Each column

corresponds to synthetic networks generated by a model with N = 50000 nodes, ⟨k⟩ = 10, β = 1.5 and varying values
of γ. The shaded areas represent two-σ intervals around the mean, calculated from 10 realizations of each model.

Based on this, we select ϵ2Max < 0.4 for self-similar networks, 0.4 ≤ ϵ2Max < 1 for quasi-self-similar networks, and
ϵ2Max ≥ 1 for non-self-similar networks.

Here, we consider the subgraph corresponding to kT = 2 as the original network. Since low-degree nodes often
introduce unwanted fluctuations in structural properties, removing them allows the analysis to focus on the core
topological characteristics of the network.

Fig. 10 illustrates the normalized average degree of subgraphs, ⟨k(kT )⟩/⟨k⟩, as a function of kT in the DTR flows
for real networks. The peak of this function is used to determine the kmax

T value in real networks, accounting for
finite-size effects and diverse degree distributions. Moreover, Table II highlights ϵ2 values computed for different
structural properties in real networks.

In the experiments with real networks, the maximum number of intervals in [2, kmax
T ] is set to nmax = 5, the

minimum number to nmin = 2 and the minimum gap between kT values is ∆kmin = 3. The number of bins for the
exponential binning is nbins = 20 for both synthetic and real networks.
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FIG. 5: The complementary cumulative degree distribution of the synthetic networks in the DTR flow as a function
of the degree rescaled by the average degree in the corresponding subgraph, kres = k/⟨k(kT )⟩. Each column
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FIG. 8: Degree-dependent clustering coefficient of the synthetic networks in the DTR flow as a function of the
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FIG. 9: Degree-dependent clustering coefficient of the synthetic networks in the DTR flow as a function of the
degree rescaled by the average degree in the corresponding subgraph, kres = k/⟨k(kT )⟩. Each column corresponds to

synthetic networks generated by a model with N = 50000, ⟨k⟩ = 10, β = 3 and varying values of γ. The inset
highlights average clustering coefficient as a fucntion of kT . The shaded areas represent two-σ intervals around the

mean, calculated from 10 realizations of each model.
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Algorithm 1 Algorithm for classifying networks as self-similar, quasi-self-similar, or non-self-similar

1: Calculate the maximum value of the degree-thresholding parameter, kmax
T , corresponding to the peak of the curve

⟨k(kT )⟩/⟨k⟩ as a function of kT .
2: Divide [2, kmax

T ] into n evenly spaced intervals (except for the last one) to determine n + 1 values for kT . Set n =
max

(
nmin,min

(
nmax, ⌊(kmax

T − 2)/∆k⌋
))
, with ∆k = max

(
∆kmin, ⌊(kmax

T − 2)/nmax⌋
)
.

3: For each value of kT , apply DTR on the original network
4: Plot CCD as a function of rescaled degree, kres = k/⟨k(kT )⟩, in the DTR flow
5: Plot knn × ⟨k(kT )⟩/⟨k2(kT )⟩ as a function of rescaled degree in the DTR flow
6: Plot c(k|kT )/⟨c(kT )⟩ as a function of rescaled degree in the DTR flow
7: Compute the average of the squared relative differences between each curve in the DTR flow and the one for original

network across all three plots (knn, CCD, and c(k)), using exponential binning with nbins number of bins within the shared
range of the x-axis for the two curves.

ϵ2 =
1

n+ 1

1

nbins

∑
kT

nbins∑
i=1

(
bin valueorgi − bin valuekT

i

bin valueorgi

)2

8: Select ϵ2Max = Max(ϵ2CCD, ϵ2knn, ϵ
2
c)

9: if ϵ2Max < 0.4 then
10: Classify the network as self-similar
11: else if 0.4 ≤ ϵ2Max < 1 then
12: Classify the network as Quasi-self-similar
13: else
14: Classify the network as Non-self-similar
15: end if

TABLE II: ϵ2 values computed for different structural properties including complementary comulative degree
distribution ϵ2CCD, average nearest-neighbor degree function ϵ2knn

, and clustering spectrum ϵ2c in real-world network.

The bolded values represent the maximum ϵ2 for each network, denoted as ϵ2Max and used to classify the networks
into self-similar, quasi-self-similar, or non-self-similar.

Networks ϵ2CCD ϵ2knn
ϵ2c

Astrophysics 0.29 0.06 0.13
Bible-Nouns 0.25 0.16 0.26
PGP 0.35 0.16 0.24
Internet 0.32 0.21 0.22
Facebook 0.22 0.07 0.13
Fb-Friends 0.12 0.05 0.13
Int-4896 0.29 0.22 0.24
Solo-BrightKite 0.25 0.07 0.39
Bitcoin-Trust 0.32 0.18 0.26
GMP-Drosophila 0.26 0.11 0.59
GMP-Mus 0.27 0.23 0.47
GMP–S.cerevisiae 0.26 0.08 0.08
PPI-Drosophila 0.22 0.12 0.32
Wikipedia-am 0.38 0.37 0.33
PPI-rat 0.31 0.55 6.27
GMP-Celegans 0.24 0.28 2.31
GI-S.cerevisiae 0.27 0.05 0.05
Japanese-Words 0.3 0.21 0.23
GMP-Plasmodium 0.28 0.27 0.26
MB-R.norvegicus 0.49 0.45 0.48
Int-figeys 0.24 0.33 1.13
WikiTalk-Catalan 9.89 0.53 0.29
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FIG. 10: Average degree of subgraphs, normalized by the average degree of the original network as a function of kT
in DTR flows. The maximum value for kT is the one at the peak of the curve.

Appendix F: Dataset description

Astrophysics [34]: Nodes represent authors from the astrophysics section of arXiv (astro-p), and edges indicate
collaborations.

Bible-Nouns [35]: Nodes are noun phrases (places and names) from the King James Bible, with edges denoting
co-occurrence in verses.

PGP [36]: Nodes are users of the Pretty Good Privacy algorithm, and edges represent trust relationships through
key signing.

Internet [37, 38]: Nodes are Autonomous Systems (ASs), and edges represent the connections between them in
the network.
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Facebook [39]: Nodes represent Facebook pages, and edges denote mutual likes between them.
Fb-Friends [40]: Nodes are university students from the Copenhagen Networks Study, and edges represent Face-

book friendships.
Int-4896 [41]: Nodes represent the proteins of the Schizosaccharomyces pombe species, and edges denote experimen-

tally verified physical interactions, including protein–protein, protein–DNA, metabolic pathway, and kinase–substrate
interactions.

Solo-BrightKite [42]: Nodes represent users of the Brightkite location-based social networking service, and edges
indicate mutual friendships between users.

Bitcoin-Trust [43, 44]: Nodes represent users of the Bitcoin OTC platform, and directed edges indicate trust
ratings, where each edge includes a weight assigned by one user to another.

GMP-Drosophila, GMP-Mus, GMP–S.cerevisiae, GMP-Celegans, GMP-Plasmodium [45]: Multiplex
networks representing different types of genetic interactions in various organisms. Nodes represent genes, and edges
capture different genetic interactions across different layers, including physical, association, co-localization, direct,
suppressive, and additive/synthetic interactions.

PPI-Drosophila [46]: Nodes represent proteins in the Drosophila melanogaster species, and edges represent binary
physical protein-protein interactions identified using yeast two-hybrid (Y2H) analysis.

Wikipedia-am [47]: Nodes represent articles in the Amharic language edition of Wikipedia, and directed edges
represent hyperlinks between articles

PPI-rat [48]: Nodes represent proteins in the rat species, and edges represent physical protein-protein interactions
between them.

GI-S.cerevisiae [48]: Nodes represent genes in Saccharomyces cerevisiae (baker’s yeast), and edges indicate genetic
interactions where mutations in one gene affect or are modified by mutations in another gene.

Japanese-Words [49]: Nodes represent words in Japanese texts, and edges indicate adjacency, where one word
directly follows another. The original network is directed.

MB-R.norvegicus [50]: Nodes represent substances involved in enzymatic reactions in Rattus norvegicus (rat),
and edges indicate reactant-product relationships in these reactions.

Int-figeys [51]: Nodes represent human proteins, and edges denote binding interactions between proteins.
WikiTalk-Catalan [47]: Nodes represent registered editors in the Catalan Wikipedia, and edges indicate interac-

tions where one user writes a message on another user’s talk page.
In this work, we ignore weights in the weighted networks and construct undirected versions of all directed networks.

In the case of multiplex networks, we create a monolayer network by treating all interaction types equally and removing
repeated links.

Appendix G: Experimental Analysis of Real-World Networks

Here, we analyze the DTR self-similarity in real networks. Table III summarizes the key properties of these
networks. Figs. 11, 12, and 13 showcase how the fundamental structural properties of self-similar networks varies
under DTR. As expected for self-similar networks and in agreement with the ϵ2-Test values reported in Table III,
the degree distribution, average nearest-neighbor degree, and clustering spectrum exhibit minimal variation across
different values of kT . Similarly, Figs. 14 and 15 depict the corresponding variations for quasi-self-similar and non-
self-similar networks, respectively. These variations are more pronounced for quasi-self-similar and non-self-similar
networks, highlighting their weaker structural invariance under DTR.

Moreover, Fig. 16 presents a Sankey diagram for the real-world networks sorted from the top in descending order
of their estimated β, which quantifies the coupling between network topology and the underlying hyperbolic space
of the S1 model. On the left side, they are categorizing as self-similar, quasi-self-similar, or non-self-similar based
on their ϵ2-Test values displayed in paranthesis and the thresholds from Fig. 3-(b). The results highlight that all
non-self-similar networks have β < 1, classifying them as either non-geometric or quasi-geometric. Additionally,
nearly all geometric networks are self-similar, with the exception of GMP-Drosophila, which has a β value near the
critical threshold βc = 1 and is thus classified as quasi-self-similar. These findings reinforce the connection between
self-similarity and geometricity in real networks.
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TABLE III: Real network Properties. N is the number of nodes, E is the number of edges, ⟨k⟩ is average degree,
kmax is maximum degree and c is the average clustering in the giant connected component of the real networks. β

indicates the level of clustering and computed using Mercator embedding tool. Type S refers to self-similar
networks, Type NS indicates non-self-similar networks, and Type QS denotes quasi-self-similar networks. The

following abbreviations are used: (MB) for metabolic, (GI) for genetic interactions, (GMP) for genetic multiplex,
(PPI) for protein-protein interactions, (Solo) for social locations, and (Int) for interactome.

Networks N E ⟨k⟩ kmax c β ϵ2Max Type
Astrophysics 14845 119652 16.12 360 0.72 3.27 0.29 S
Bible-Nouns 1707 9059 10.61 364 0.71 3.2 0.26 S
PGP 10680 24316 4.55 205 0.44 1.95 0.35 S
Internet 23748 58414 4.92 2778 0.61 1.95 0.32 S
Facebook 22470 170823 15.2 709 0.41 1.6 0.22 S
Fb-Friends 800 6418 16.05 101 0.32 1.54 0.12 S
Int-4896 4086 47961 23.48 448 0.41 1.43 0.29 S
Solo-BrightKite 56739 212945 7.51 1134 0.27 1.33 0.39 S
Bitcoin-Trust 5875 21489 7.31 795 0.29 1.13 0.32 S
GMP-Drosophila 8114 38909 9.6 179 0.12 1.07 0.59 QS
GMP-Mus 7402 16858 4.56 368 0.13 0.99 0.47 QS
GMP–S.cerevisiae 6567 223539 68.08 3254 0.22 0.87 0.26 S
PPI-Drosophila 2705 8458 6.25 129 0.07 0.78 0.32 S
Wikipedia-am 20883 94022 9 3911 0.18 0.76 0.38 S
PPI-rat 6803 14636 4.3 836 0.15 0.72 6.27 NS
GMP-Celegans 3692 7650 4.14 526 0.11 0.69 2.31 NS
GI-S.cerevisiae 5933 441991 148.99 2244 0.17 0.63 0.27 S
Japanese-Words 2698 7995 5.93 725 0.3 β ≈ 0 0.3 S
GMP-Plasmodium 1158 2402 4.15 83 0.03 β ≈ 0 0.28 S
MB-R.norvegicus 1590 4666 5.87 498 0.19 β ≈ 0 0.49 QS
Int-figeys 2217 6418 5.79 314 0.07 β ≈ 0 1.13 NS
WikiTalk-Catalan 79209 181529 4.59 53234 0.83 β ≈ 0 9.89 NS
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FIG. 11: Topological properties of real-world self-similar networks, including the complementary cumulative degree
distribution (CCD), the rescaled average nearest-neighbor degree knn ∗ ⟨k(kT )⟩/⟨k2(kT )⟩, the rescaled clustering

spectrum c(k|kT )/⟨c(kT )⟩ as a function of the rescaled degree kres = k/⟨k(kT )⟩, and the average clustering coefficient
c as a function of kT in the DTR flow.



21

10−1 100
10−3

10−2

10−1

100
C

C
D

kT = 2
kT = 5
kT = 8
kT = 11
kT = 14

10−1 100
10−1

100

k n
n
∗〈

k(
k T

)〉/
〈k2 (

k T
)〉

10−1 100
10−1

100

c(
k|k

T
)/
〈c(

k T
)〉

5 10
10−1

100

c

10−1 101

10−2

100

C
C

D

kT = 2
kT = 13
kT = 24
kT = 35
kT = 46
kT = 57

10−1 101

10−2

100

k n
n
∗〈

k(
k T

)〉/
〈k2 (

k T
)〉

10−1 100 101

10−1

100

c(
k|k

T
)/
〈c(

k T
)〉

0 20 40
10−1

100

c

100 102

10−3

10−1

C
C

D

kT = 2
kT = 11
kT = 20
kT = 29
kT = 38
kT = 49

100 102

10−2

10−1

100

k n
n
∗〈

k(
k T

)〉/
〈k2 (

k T
)〉

100 102

10−1

100

c(
k|k

T
)/
〈c(

k T
)〉

0 20 40
10−1

100

c

10−1 100 101

10−2

100

C
C

D

kT = 2
kT = 7
kT = 12
kT = 17
kT = 22
kT = 29

10−1 100 101
10−1

100

k n
n
∗〈

k(
k T

)〉/
〈k2 (

k T
)〉

10−1 100 101
10−1

100

c(
k|k

T
)/
〈c(

k T
)〉

10 20 30
10−1

100

c

10−1 100 101

kres

10−2

100

C
C

D

kT = 2
kT = 20
kT = 38
kT = 56
kT = 74
kT = 94

10−1 100 101

kres

10−1

100

k n
n
∗〈

k(
k T

)〉/
〈k2 (

k T
)〉

10−1 100 101

kres

10−1

100

c(
k|k

T
)/
〈c(

k T
)〉

0 50
kT

10−1

100

c

Fb-Friends
Int-4896

Solo-B
rightK

ite
B

itcoin-Trust
G

M
P-S.cerevisiaes
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FIG. 13: Topological properties of real-world self-similar networks, including the complementary cumulative degree
distribution (CCD), the rescaled average nearest-neighbor degree knn ∗ ⟨k(kT )⟩/⟨k2(kT )⟩, the rescaled clustering

spectrum c(k|kT )/⟨c(kT )⟩ as a function of the rescaled degree kres = k/⟨k(kT )⟩, and the average clustering coefficient
c as a function of kT in the DTR flow.
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FIG. 14: Topological properties of real-world quasi-self-similar networks, including the complementary cumulative
degree distribution (CCD), the rescaled average nearest-neighbor degree knn ∗ ⟨k(kT )⟩/⟨k2(kT )⟩, the rescaled

clustering spectrum c(k|kT )/⟨c(kT )⟩ as a function of the rescaled degree kres = k/⟨k(kT )⟩, and the average clustering
coefficient c as a function of kT in the DTR flow.
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FIG. 15: Topological properties of real-world non-self-similar networks, including the complementary cumulative
degree distribution (CCD), the rescaled average nearest-neighbor degree knn ∗ ⟨k(kT )⟩/⟨k2(kT )⟩, the rescaled

clustering spectrum c(k|kT )/⟨c(kT )⟩ as a function of the rescaled degree kres = k/⟨k(kT )⟩, and the average clustering
coefficient c as a function of kT in the DTR flow.
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FIG. 16: Sankey diagram of real networks, sorted from the top in descending order by β values. On the left,
networks are classified as geometric (β > 1), quasi-geometric (0.5 < β < 1), and non-geometric (β ≈ 0). On the

right, they are categorized in terms of self-similarity, using their ϵ2Max values displayed in parentheses.
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[9] E. Candellero and N. Fountoulakis, Internet Mathematics 12, 2 (2016).

[10] M. E. Newman, Physical Review E 68, 026121 (2003).
[11] D. Krioukov, Phys. Rev. Lett. 116, 208302 (2016).
[12] R. Michielan, N. Litvak, and C. Stegehuis, Phys. Rev. E 106, 054303 (2022).
[13] M. A. Serrano, D. Krioukov, and M. Boguñá, Phys. Rev. Lett. 100, 078701 (2008).
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