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Bipartite networks appear in many real-world contexts, linking entities across two distinct sets.
They are often analyzed via one-mode projections, but such projections can introduce artificial cor-
relations and inflated clustering, obscuring the true underlying structure. In this paper, we propose
a geometric model for bipartite networks that leverages the high levels of bipartite four-cycles as a
measure of clustering to place both node types in the same similarity space, where link probabilities
decrease with distance. Additionally, we introduce B-Mercator, an algorithm that infers node posi-
tions from the bipartite structure. We evaluate its performance on diverse datasets, illustrating how
the resulting embeddings improve downstream tasks such as node classification and distance-based
link prediction in machine learning. These hyperbolic embeddings also enable the generation of
synthetic networks with node features closely resembling real-world ones, thereby safeguarding sen-
sitive information while allowing secure data sharing. In addition, we show how preserving bipartite
structure avoids the pitfalls of projection-based techniques, yielding more accurate descriptions and
better performance. Our method provides a robust framework for uncovering hidden geometry in
complex bipartite systems.

I. INTRODUCTION

Bipartite networks lie at the heart of countless real-
world applications, linking authors to the articles they
write [1–4], users to the products they consume [5–7],
people to the groups they belong to [8], or countries to
the languages they speak [9]. They also arise naturally
in metabolic networks, where metabolites are connected
to the chemical reactions or enzymes that transform
them [10–12], in plant-pollinator networks [13, 14], and in
machine learning applications, where nodes have associ-
ated features used to feed graph neural networks [15].
By design, each bipartite system splits its nodes into
two disjoint sets, with no edges connecting nodes within
the same set. This seemingly simple rule nonetheless
yields rich and complex connectivity patterns, enabling
researchers to model collaboration, consumption, and as-
sociation processes across diverse domains. Yet bipartite
networks have historically garnered less attention than
their unipartite counterparts. Given their ubiquity and
straightforward interpretability, a renewed focus on bi-
partite structures is both timely and necessary to fully
capture the multiple facets of interaction present in many
real-world complex systems and data structures.

A general practice is to analyze bipartite networks by
projecting them onto a single node set, creating a one-
mode network [16]. For instance, in an author–article
bipartite network, one might create a unipartite graph
of authors by connecting two authors if they have co-
authored at least one article [1–4]. While such one-mode
projections allow researchers to employ classic unipar-
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tite tools (e.g., clustering coefficients, degree distribu-
tions, community-detection algorithms), they also intro-
duce strong correlations between edges. These correla-
tions arise owing to sets of nodes that share common
neighbors in the bipartite structure inducing cliques –
or fully connected subgraphs– in the one-mode projec-
tion. Hence, the resulting unipartite networks can exhibit
inflated clustering and misleading connectivity patterns
that do not necessarily reflect the independent pairwise
interactions of the underlying bipartite system. Besides,
there is an unavoidable loss of information when bipartite
networks are projected and it is even possible to obtain
the same one-mode projection out of different bipartite
networks [16, 17].

To overcome these limitations and more accurately
capture the true structure of bipartite systems, it is criti-
cal to develop a modeling framework that treats bipartite
networks directly rather than relying solely on their one-
mode projections. In this paper, we propose to use net-
work geometry to make sense of bipartite networks and
to find geometric representations for this class of sys-
tems. In recent years, network geometry [18] has been
extremely successful in explaining undirected [19], di-
rected [20], weighted [21], and multiplex networks [22, 23]
in many real systems and has also been extended to bi-
partite settings, proposing that nodes of both types can
indeed lie in a shared latent space with connection prob-
abilities governed by their mutual distances [12, 24]. De-
spite the fact that bipartite networks do not contain tri-
angles by definition (the signature of any metric space), it
is still possible to define a clustering coefficient by count-
ing cycles of length four (i.e., squares). Empirical anal-
yses have shown that these four-cycles can be abundant
in real bipartite networks, leading to high effective clus-
tering values [15, 25]. This finding suggests that, indeed,
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FIG. 1. Schematic representation of the bipartite-SD model
in (a) D = 1 and (b) D = 2. Nodes A are shown as circles
whereas nodes B are shown as squares whose sizes are propor-
tional to the nodes’ expected degrees. The angular distances
between nodes A and B are highlighted. Light grey lines rep-
resent the edges in the bipartite network generated by Eq. (1).

bipartite networks may be embedded in a metric space
where the likelihood of a connection between two nodes
of different types decreases with the distance separating
them.

Assuming that a bipartite network can be embedded
in a similarity (or metric) space, a logical step is to seek
methods for inferring the positions of its nodes within
this space from real data. Previous approaches typi-
cally rely on one-mode projections of bipartite networks
–using, for instance, the D-Mercator tool [26, 27]– to
embed each type of node. However, such projections
often introduce artificial correlations and inflated clus-
tering, reducing embedding accuracy. Here, following
results in [12, 24], we introduce the bipartite-SD/HD+1

model in which nodes of both types lie in the same D-
dimensional similarity space. Using this model, we pro-
pose B-Mercator, an algorithm designed specifically for
bipartite networks that enables the creation of multi-
dimensional hyperbolic maps of real bipartite datasets.
To illustrate its capabilities, we embeded and analyzed
three datasets: Unicodelang [9], which links countries to
the languages spoken in those regions, Metabolic [28], in
which metabolites are connected through chemical reac-
tions, and Flavor [29], which connects food ingredients
to their corresponding flavor compounds. Furthermore,
we show how B-Mercator can be applied to supervised
machine learning tasks, including node classification and
link prediction, yielding a significant performance gain
with respect to state of the art methods, especially when
a strong correlation exists between nodes’ labels and their
feature distributions.

II. RESULTS

A. The bipartite-SD/HD+1 model and B-Mercator

Given a bipartite network whose links connect type-
A and type-B nodes, B-Mercator finds an embedding of
both node types on the surface of a D-sphere SD (or,
equivalently, within a (D + 1)-sphere in the hyperbolic
space HD+1), which serves as a likely realization of the
bipartite-SD/HD+1 model. In the hyperbolic represen-
tation, the coordinates of nodes on the D-sphere repre-
sent their positions in the similarity space, whereas the
radial coordinate within the hyperbolic (D + 1)-sphere
encodes their popularity, as reflected by their expected
degree. Figure 1 shows two examples of bipartite net-
works generated by the bipartite-SD model for D = 1
and D = 2. In a nutshell, pairs of type-A and -B nodes
are connected with a probability that depends on their
distance on the sphere, rescaled by the product of their
expected degrees (represented by the size of the nodes in
the figure). In the hyperbolic representation, each node is
assigned a radial coordinate so that the connection prob-
ability becomes a function of the hyperbolic distance be-
tween the two nodes, thereby making the model a random
geometric graph in hyperbolic geometry. In both repre-
sentations, the model includes an inverse temperature βb,
which modulates the amount of noise in the system and
thereby gauges the coupling between the network topol-
ogy and its geometric characteristics. A full description
of the bipartite-SD/HD+1 model and the technical details
of the B-Mercator embedding algorithm are provided in
the Methods sections IV A and IV B.

B. Validation

To validate our method, we generated synthetic bi-
partite networks from the bipartite-SD/HD+1 model and
measured the quality of the estimated node positions.
Figure 2 shows comparisons between the true and in-
ferred coordinates for type A and B nodes. One can
observe a high Pearson correlation coefficient for D = 1
and D = 2, corroborating the effectiveness of our em-
bedding technique. For more examples in D = 1 and
D = 2 as well as D = 3, see Supplementary Figures 2-
4. B-Mercator can also infer the inverse temperature
βb as shown in Supplementary Figure 5. Moreover, we
tested the reproducibility of the topological properties of
the original network by generating an ensemble of syn-
thetic networks using the bipartite-SD/HD+1 model with
the inferred parameters and nodes’ coordinates (see Sup-
plementary Figures 6-10). The degree distributions and
clustering spectra of type A and B nodes were very well
reproduced. We also observed a good agreement between
the empirical and theoretical connection probabilities.
These findings confirm that B-Mercator stands out as
a high-quality algorithm, accurately reconstructing the
nodes’ coordinates of synthetic networks. Moreover, it
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FIG. 2. Validation of B-Mercator on synthetic bipar-
tite networks. Relationship between the original and the
inferred coordinates of the (a, b) bipartite-S1 and (c, d)
bipartite-S2 models. In the top left corner of each figure, we
report the value of the Pearson correlation coefficient between
the inferred and original coordinates. Since the inferred
coordinates for D = 2 might be rotated, we transform them
to minimize the average angular distance between the original
and inferred coordinates (cf. Supplementary Section III in
[27]). Parameters for (a, b) (D,NA, NB , γA, γB , ⟨kA⟩, βb)
= (1, 500, 1000, 2.7, 2.1, 10, 1.5), for (c, d)
(D,NA, NB , γA, γB , ⟨kA⟩, βb) = (2, 500, 1000, 2.7, 2.7, 10, 6).

reliably determines all other model parameters, such as
hidden degrees and inverse temperature, regardless of the
network’s dimensionality.

C. Bipartite greedy routing

In order to establish a meaningful geometric represen-
tation of a bipartite network at the global scale, we intro-
duce bipartite greedy routing (BGR) as a practical tool

to infer the network’s effective dimension [30]. The idea is
to first embed the bipartite network into a latent geomet-
ric space with B-Mercator and then test how well nodes
can route information by simply forwarding messages to
their neighbors closest to the destination in that space.
By systematically evaluating the success of these greedy
routes –measured, for instance, by the probability that
messages reach their targets without getting stuck– we
gain insights into the dimensional structure underlying
the network. A lower-dimensional latent space often re-
quires fewer “hops” and exhibits more consistent greedy
paths, thus reflecting more coherent topological struc-
tures. Conversely, if greedy routing frequently fails or re-
quires excessive detours, it suggests a higher-dimensional
or more complex geometry. In this way, the performance
of greedy routing serves as an indicator of how well the
bipartite graph can be embedded in a space of a given
dimension, effectively allowing us to determine the di-
mension that best captures its structure.

We implemented a BGR protocol in which both the
origin and destination can be either type A or type B
nodes thus defining four variants. In Figure 3a, we de-
pict a schematic picture of the BGR for the A–B variant,
i.e., when the source node is a type A node (SA), and the
target node is a type B node (TB). The message is for-
warded from SA to the type B node that is hyperbolically
closest to the target. Since the node B1 is not the desti-
nation, the message is forwarded again to a type A node.
The process is repeated until the destination is reached
or the message becomes stuck. Then, the BGR protocol
is executed for a large number of randomly chosen node
pairs to assess the global network’s geometric properties.

We tested the BGR protocol in synthetic networks gen-
erated from the bipartite-SD model. First, we gener-
ated networks with specific dimensionality and topologi-
cal properties, and we obtained their hyperbolic maps by
embedding them using B-Mercator with different embed-
ding dimensions. The performance of BGR was assessed
based on two key measures: the proportion of messages
that successfully reach their destination ps, i.e., the suc-
cess rate, and the mean stretch, where stretch is defined
for each path connecting a source and target node as the
ratio of the hop count of a successful greedy path to the
shortest path. In Figure 3b, we show the success rate
as a function of the embedding dimension for networks
generated using the bipartite-SD model with dimensions
ranging from D = 1 to D = 4. Interestingly, the per-
formance of BGR is optimal (in terms of ps and mean
stretch, see Supplementary Figure 12) when B-Mercator
is used with the same dimension that was used to gen-
erate the network, thus justifying BGR as an alternative
method to infer the effective dimension of real networks,
different from the topological-based method introduced
in [31]. These results are consistent across all variants of
BGR (see Supplementary Figure 11) and corroborate the
results obtained for unipartite networks [27].
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FIG. 3. Bipartite greedy routing in synthetic net-
works. (a) Schematic view of the greedy routing protocol.
We select a type A node as an origin (SA) and a type B
(TB) as a destination. The red arrows show how the pack-
age/message is forwarded towards the destination. In the
second example, we select two type B nodes as source (SB′)
and destination (TB′′) and outline the greedy path with pur-
ple color. The line width is proportional to the connection
probability (Eq. 1). (b) Success rate as a function of embed-
ded dimension for networks generated in D = {1, 2, 3, 4}. We
consider here a navigation protocol where a source is a type A
node and a destination a type B one. Results are obtained by
averaging over 10 realizations with (NA, NB , γA, γB , ⟨k⟩ , βb)
= (500, 500, 2.5, 2.5, 10, 1.5).

D. Embedding of real bipartite networks

The significance of B-Mercator lies not only in its
ability to embed synthetic networks generated by the
bipartite-SD/HD+1 model, but rather in its capacity to
uncover geometric insights from real bipartite networks.
Moreover, embeddings produced by B-Mercator can be
applied to tasks such as node classification and link pre-
diction on graph-structured data. As case studies, we
analyze the Unicodelang dataset, which captures rela-
tionships between countries and the languages spoken
within them, the human metabolic network connecting
metabolites with the reactions in which they participate,
and the flavor network linking ingredients to the chemical
compounds they contain. These examples demonstrate
the practical applicability of B-Mercator in extracting
meaningful structural patterns from real-world bipartite
networks.

Using B-Mercator, we embedded the Unicodelang
dataset in various dimensions. The inferred embeddings
are able to reproduce the topological properties of the
network (see Supplementary Figure 15). In Figure 4, we
show a dual embedding representation of this dataset in
dimension D = 1. First, we focus on the countries in
which a given language is used. For instance, in Fig-
ure 4a, we plot all countries in which English is spoken,
i.e., the neighbors of the English language in the bipartite
network. One can notice that English is located closer
to India or the Philippines than to the United States of
America (USA). This can be explained by the fact that
many different languages are spoken in the USA, which
influence its position in the bipartite map. Indeed, in
Figure 4b, where we plot all neighbors of the Spanish
language, the USA is located close to Spanish language.
Lastly, in Figure 4c one can observe that countries from
the French colonialism are concentrated in the similarity
space and lie close to the French language, in contrast to
France and other European countries. We can also shift
the perspective: instead of examining the neighbors of
each language, we can analyze the neighbors of a given
country. In the bottom row of Figure 4, we plot the lan-
guage neighbors of India, China, and Brazil. Countries
are often located in the embedding space close to the
most widely spoken language. Additional examples are
provided in Supplementary Figure 13, where we explore
the neighbors of languages such as Hindi, Swahili, Cata-
lan, Persian, Korean, Dutch, Russian, and Arabic. Sim-
ilarly, in Supplementary Figure 14, we depict the neigh-
bors of countries including Canada, Turkey, Indonesia,
Cameroon, Tanzania, Greece, the Philippines, and Bo-
livia.

The hyperbolic bipartite embedding enables us to ex-
amine the concentration of countries sharing the same
language. We select the top 15 languages with the high-
est degree and compute the angular distance from each
language to its neighboring countries. A small average
angular distance may indicate that these countries are
highly similar, whereas a broad distribution suggests a
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FIG. 4. Visualization of the bipartite-S1 embedding of the Unicodelang dataset per country or language. Panels
(a, b, c) show countries where a given language is spoken, i.e., the neighbours of the language node. The size of the nodes is
proportional to the number of language speakers in that country. The color corresponds to the geographical region in which the
country is located. A star marker indicates the position of a given language. In panels (d, e, f), we depict all languages spoken
in a given country, i.e., the neighbours of the country node. The size of the nodes is proportional to the fraction of speakers of
a given language. The color represents that language’s script. A cross marker indicates the position of a given country.

more international language. Figure 5a displays the di-
versity for these high-degree languages. As expected, the
angular distance distribution for English is broad, indi-
cating connections with countries distributed throughout
the similarity space. Interestingly, the angular distances
for Fula are relatively small. Fula, a Senegambian lan-
guage spoken primarily in West and Central Africa, is
concentrated in a specific region of our embedding space.
Similarly, we can examine the linguistic diversity within
each country. Following the previous approach, we se-
lected the top 15 countries with the highest degree and
computed the angular distances to each neighboring lan-
guage. In a given country, if the languages are more
similar, their angular positions in the similarity space
should be more concentrated. Figure 5b shows that In-
dia and Canada exhibit a broader distribution of angular
distances, reflecting the presence of a diverse array of lan-
guages. In contrast, Russia and Cameroon display a nar-
rower distribution, indicating a more homogeneous set
of languages. Notably, all these countries are linguistic
hubs, with approximately 30 or more languages spoken
in each. These results suggest that our embedding can
serve as an indicator of a language’s international reach
and linguistic diversity, which is not solely reflected by
its degree.

In addition, we investigated the human metabolic net-

work, defined as metabolites connected to the reactions
they participate in [28] and the network of food ingredi-
ents based on the flavor compounds they share [29] (see
Section IV C). In both cases, B-Mercator is able to repro-
duce topological properties of this biparite network such
as the degree distributions and clustering spectra. See
Supplementary Section 6 for more details.

Finally, we applied the bipartite greedy routing proto-
col to the embeddings derived from these real-world net-
works. For the Unicodelang network, the highest success
rate—based on the A − A BGR variant—is observed at
an embedding dimension of D = 4. However, variations
in the success probability (ps) across different embed-
ding dimensions are minimal, likely due to the relatively
low value of βb. In contrast, the highest ps for both the
Metabolic and Flavor networks is achieved at D = 1. A
summary of these findings is provided in Supplementary
Table 2.

E. Case study on the graph machine learning tasks

Graph Machine Learning (Graph ML) focuses on ex-
tracting patterns, making predictions, and uncovering in-
sights from graph-structured data [32, 33]. This data is
typically defined as a set of entities (nodes) with com-
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FIG. 5. Language or country diversity for the top
15 highest-degree nodes. Panel (a) shows violin plots of
angular distances between each language and its neighbor-
ing countries, with colors indicating script type. Panel (b)
presents analogous plots for countries, with colors represent-
ing geographic region. In both panels, nodes are ordered in
descending order of degree, with each node’s degree (in brack-
ets) indicated next to its label. Only the central 95% of the
data is plotted—that is, data between the 2.5th and 97.5th
quantiles are shown. A black line highlights the median value
in each plot.

plex relationships (links), defining a unipartite graph Gn.
Nodes are enriched with a set of features, defining a bi-
partite network of nodes and features Gn,f . Within the
Graph ML community, two key tasks are commonly used
to evaluate and rank network embedding models: node
classification (NC) and link prediction (LP). In turn, net-
work embeddings can be broadly categorized into super-
vised and unsupervised approaches. Supervised embed-
dings, such as those learned by graph neural networks
(GNNs), use node labels in the training set to inform
the learning process for classification tasks. In con-
trast, unsupervised methods leverage only the network

structure and, optionally, node features to generate low-
dimensional representations of the data. These maps can
then be used for multiple downstream tasks by integrat-
ing additional classification models.

Our embedding method B-Mercator belongs to the
class of unsupervised graph embeddings that leverage
only the nodes’ feature matrices. This is possible thanks
to the findings in [15], which show that nodes and their
associated features define a bipartite network, Gn,f , with
strong geometric properties. We used B-Mercator to find
an embedding of the nodes-features bipartite network in
the common similarity space, which we subsequently used
to perform NC and LP tasks in a supervised manner. To
highlight the importance of such embeddings, we com-
pared B-Mercator with D-Mercator [27], which produces
multidimensional hyperbolic maps of unipartite networks
Gn without using information from the nodes’ features.
We selected embedding dimensions D = 1 and D = 2 to
map the node features into the bipartite-S1 and bipartite-
S2 models using B-Mercator, and to map the unipartite
network into the S1 and S2 models using D-Mercator.

We also compared our model-driven approach with ex-
isting state-of-the-art graph embedding methods in both
node classification and link prediction tasks. For fur-
ther details on the methods used, see Supplementary Sec-
tion 7. We selected seven graph datasets commonly used
in machine learning research, each with varying levels
of correlations between the graph, nodes’ features, and
nodes’ labels, (see Supplementary Section 8 for details).
It has been shown recently that the performance met-
rics of Graph ML tasks can vary significantly depend-
ing on these correlations [34]. For instance, in the node
classification tasks, adding features can be detrimental
when the correlation between node features and network
structure is very low. In contrast, adding features signif-
icantly enhances the results when the correlation is high.
Among the analyzed networks, Cora and Citeseer exhibit
a strong correlation between network structure and node
features. In contrast, IMDB, Wisconsin, Texas, and Cor-
nell show relatively low correlation, while Film demon-
strates almost no correlation (see Supplementary Table
S3 for more details).

To compute the accuracy of the node classification
task, we applied a KNeighborsClassifier from the scikit-
learn library [35] to each network embedding with K =
10 as the number of nearest neighbors. We split the data
into training and testing subsets with a 20/80% ratio. In
the case of B-Mercator and D-Mercator, we computed
distances among pairs of nodes using their angular sepa-
ration on the D-sphere. For the rest of the methods, we
computed the Euclidean distance between the nodes’ po-
sitions from the corresponding embedding. In Fig. 6a, we
report the performance of the NC task on the Wisconsin
dataset. This is a network of web pages from the Com-
puter Science department of the University of Wisconsin.
Each web page is enriched with 1613 features and manu-
ally classified into one of five categories: student, project,
course, staff, and faculty. For this dataset, feature-based
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FIG. 6. Case study on machine learning tasks. (a) Accuracy of the node classification task and (b) balanced precision of
the distance-based link prediction task for the Wisconsin dataset. The train/test split is 20/80 for nodes in NC and 90/10 for
links in LP, where the test set is balanced by randomly adding an equal number of negative links selected from non-existing
links. The results are averaged over 10 different splits. Our methods are highlighted with diagonal hatches. The abbreviations of
the algorithms are as follows: DW – DeepWalk, R2V – Role2Vec, LE – Laplacian Eigenmaps, FN – FeatherNode. The numeric
value in brackets indicates the embedding dimension. All other parameters are set to their default values. The methods are
sorted by the median accuracy in NC and balanced precision in LP tasks. In addition, the methods are grouped and colored
by input data type, i.e., Network-based methods use only network topology, Feature-based methods use only nodes’ feature
matrix, and Feature+Network-based methods merge two things to construct the network embedding. (c) Visualization of the
bipartite embedding with B-Mercator in D = 1 for the Wisconsin dataset. We plot the positions of the nodes and color them
based on the metadata. (d) Average rank in link prediction and node classification tasks across seven datasets. We plot the
medium rank value with the error bars depicting the interquartile range (IQR). The size of the markers is inversely proportional
to the embedding dimension and their shapes correspond to the input data type. Our methods are outlined with a thicker
marker border.

methods demonstrate superior performance, with our
methods (B-Mercator in D = 1 and D = 2) achiev-
ing a significant margin of improvement over competi-
tors. This is due to the strong correlation between the
nodes’ features and labels, as shown in [34]. In contrast,
network-based methods tend to perform less effectively,
as they rely solely on the graph topology, which is weakly
correlated with the nodes’ labels [34].

For the distance-based link prediction task, we ran-
domly selected a small fraction q = 0.1 of the existing
links from the network structure as positive links. Simi-
larly, an equal number of non-existing edges was selected
as negative links to form a balanced test set. The remain-
ing positive links were considered as the training network,
which was then embedded using various network-based
methods. In the case of B-Mercator, the bipartite net-
work between nodes and features was embedded, and it

was not affected by splitting the links in the network
structure into training and test sets. For B-Mercator
and D-Mercator, we used the inverse of the hyperbolic
distance between node pairs as the similarity measure,
while for the other methods, we used the inverse of the
Euclidean distance between node positions. As a re-
sult, links in the test set with the smallest distance were
ranked highest when sorted in ascending order of their
similarity scores.

In Fig. 6b, we show the precision of the different meth-
ods. In this case, methods using only the network topol-
ogy, or a combination of network structure and node fea-
tures, deliver the highest precisions. For this task, our
embeddings with D-Mercator (D = 1 and D = 2), using
only the network topology, are competitive and achieve
a performance similar to MUSAE in dimension D = 8,
demonstrating the versatility of low-dimensional embed-
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dings derived from our approach. Moreover, among
feature-based methods, B-Mercator in D = 1 and D = 2
outperforms all other approaches. This highlights the
adaptability of our methods to different tasks depending
on the underlying data representation and task require-
ments. Detailed results for additional datasets can be
found in Supplementary Figures S23–S46.

Figure 6d provides a summary of the results across
multiple datasets. For each dataset, the rank of each
method is calculated for both NC and LP tasks, and the
median rank is plotted along with the interquartile range
(IQR). B-Mercator in low dimensions (D = 1 and D = 2)
consistently ranks among the top approaches for the NC
task and outperforms all feature-based methods for the
LP task, for which D-Mercator is the best method in di-
mension D = 1. These results demonstrate the reliabil-
ity and adaptability of our methods across datasets. The
marker size in the plot, which inversely represents the
embedding dimension, further underscores the efficiency
of our low-dimensional embeddings compared to high-
dimensional alternatives. In Supplementary Figures S30
and S38, we provide a more detailed view of the rankings
for the NC and LP tasks.

III. DISCUSSION

The ability to embed real-world systems into a geo-
metric space is a pivotal step toward understanding their
intrinsic structure, function, and underlying organiza-
tion. While numerous network embedding techniques
have been proposed, most are not derived from a model-
based perspective, limiting their interpretability and ca-
pacity to reconstruct empirical data. Model-based ap-
proaches offer a principled way of capturing the genera-
tive mechanisms that shape network topologies, thereby
enabling researchers to interpret embeddings in a manner
closely aligned with the data’s underlying structure.

Several model-based embedding methods have already
proved effective for unipartite networks, yet comparable
solutions for bipartite networks have remained underex-
plored. In this work, we addressed this gap by intro-
ducing B-Mercator, a novel geometric model-based em-
bedding algorithm specifically designed for bipartite net-
works. By mapping bipartite structures into hyperbolic
space, B-Mercator offers a powerful and interpretable
way to capture community structure, hierarchical orga-
nization, and topological relationships.

To demonstrate the versatility of B-Mercator, we ap-
plied it to embed real-world bipartite systems. The
analysis of the language network (countries–spoken lan-
guages), the metabolic network (metabolites–reactions),
and the Flavor network (ingredients–chemical com-
pounds) show that the embeddings not only correlate
well with metadata but also retain the essential char-
acteristics of each dataset. Furthermore, we evaluated
B-Mercator on several node classification and link pre-
diction tasks. It consistently outperformed all unsuper-

vised methods for node classification and emerged as the
best performer among feature-based embeddings for link
prediction.

We stress an important advantage of our model-based
embeddings. The hyperbolic maps can be used to gen-
erate synthetic networks with node features that closely
resemble their real-world counterparts (see Supplemen-
tary Figures 46-48). By doing so, we safeguard any sen-
sitive information derived from real complex networks,
such as personal connections, transactional data, or pro-
prietary interactions. Thus, we enable the secure sharing
of structural data without compromising the integrity of
the original network or revealing sensitive information.

These findings underscore the value of geometric
model-based embeddings for both theoretical analyses
and practical applications, ranging from community de-
tection and studying network hierarchies to advanced
machine learning tasks. B-Mercator’s robust perfor-
mance highlights its capacity to reveal meaningful in-
sights into bipartite systems –a domain often overlooked
in the current embedding literature– while providing
substantially more accurate analyses than those based
on corresponding one-mode projections. Overall, B-
Mercator represents a significant advancement in bipar-
tite network analysis, paving the way for more accurate,
interpretable, and generative representations of complex
real-world systems.

IV. METHODS

A. Bipartite-SD/HD+1 model

In the bipartite-SD/HD+1 model – an extension of the
bipartite-S1/H2 [15] – we assign to each node (of type
A or B) a hidden degree (κA or κB) and the position in
the D-dimensional similarity space chosen uniformly at
random, and represented as a point on a D-dimensional
sphere. Each node of type A and B is assigned a vector
xi ∈ RD+1 with ||xi|| = R. For instance, when D = 1
the similarity space is represented as a circle, whereas for
D = 2 it is a sphere (see Figure 1).

The connection probability between node u of type A
and node v of type B takes the form of gravity law:

puv =
1

1 + χβb
uv

, with χuv =
R∆θuv

(µbκuκv)
1/D

. (1)

The number of nodes of type A (type B) is NA(NB),
for convenience and without loss of generality, we set the
density of nodes of type A in the D-sphere to one so that

R =

[
NA

2π
D+1

2

Γ

(
D + 1

2

)] 1
D

. (2)

The separation ∆θuv = arccos
(
xu.xv

R2

)
represents the

angular distance between nodes u and v in the D-
dimensional similarity space. The parameter βb (with
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βb > D) controls the coupling between the resulting
topology and the underlying metric space. Lastly, the
parameter µb controls the average degree of nodes of type
A and is defined as

µb =
βbΓ

(
D
2

)
sin Dπ

βb

2π1+D
2 ⟨kA⟩

, (3)

whereas the average degree of type B nodes is set by
⟨kB⟩ = NA

NB
⟨kA⟩. By choosing distributions for the hid-

den degrees κA and κB and inverse temperature βb, we
can generate bipartite networks with any desired degree
distributions and varying levels of geometric properties.

Interestingly, the bipartite-SD model can be repre-
sented in purely geometric terms as the bipartite-HD+1

model. This is achieved by mapping the hidden degrees
of each type A and B nodes to radial coordinates while
preserving their positions on the sphere SD. Specifically,
the transformation for type A nodes has the form (simi-
larly for type B nodes)

ru = R̂− 2

D
ln

κu

κu,0
, with R̂ = 2 ln

(
2R

(µbκu,0κv,0)
1/D

)
.

(4)

where κu,0(κv,0) is the smallest hidden degree for type A
(type B) nodes. We can rewrite Eq. (1) as

puv =
1

1 + e
βb
2 (xuv−R̂)

, with xuv = ru + rv + 2 ln
∆θuv
2

.

(5)

With this transformation, the space represented by the
radial position of each node, along with its angular posi-
tion on the sphere, becomes the hyperboloid model of the
hyperbolic space of dimension D + 1. Consequently, the
connection probability between nodes u and v becomes
a function of xuv, which is a good approximation of the
hyperbolic distance between them.

B. B-Mercator in details

We adopt the code of D-Mercator [27] for the embed-
ding bipartite networks. Here, we provide the overview of
the differences between the embeddings for the unipartite
and bipartite networks.

a. Inferring the hidden degrees and parameter βb.
The inference of hidden degrees for type A and B nodes,
and the inverse temperature βb is implemented as an
iterative process. We begin with the initial guess for
the parameter βb ∈ (D, 2D), where D is an embed-
ding dimension, and initialize the hidden degrees as the
observed degrees in the original network for nodes A
({kA,i, i, . . . , NA}) and nodes B ({kB,i, i, . . . , NB}). The
aim of the estimation is to modify the hidden degrees in
order to ensure that the expected degree of each node
within the model aligns with the degree observed in

the original network. After the hidden degrees for both
nodes A and B are computed, the synthetic graph from
bipartite-SD/HD+1 is constructed and the bipartite clus-
tering coefficient is calculated. If the computed bipartite
clustering coefficient deviates from that of the original
network, c̄b, the value of βb is adjusted. Then, the pro-
cess is repeated using the current estimation of hidden
degrees until a predetermined precision is reached.

b. bipartite-SD model corrected Laplacian Eigen-
maps. Since the biadjacency matrix of a bipartite graph
A is not symmetric, to apply the Laplacian Eigenmaps,
we transform it to the adjacency matrix as

B =

[
0 A
AT 0

]
(6)

Similarly to [27], the expected angular distance between
nodes u (of type A) and v (of type B) in the bipartite-SD
model, conditioned to the fact that they are connnected,
can be computed as

⟨∆θuv⟩ =
π∫

0

∆θuvρ(∆θuv|auv = 1) d∆θuv (7)

Additionally, for D = 1, we keep the ordering inferred by
LE and distribute nodes of type A and B evenly on the
circle.

c. Likelihood maximization The nodes’ coordinates
in the similarity space inferred using LE are adjusted
by Maximum Likelihood Estimation (MLE) to optimize
the probability that the bipartite-SD model generates the
observed network. We define an order of nodes sorted by
their degree for A and B type nodes separately. Fixing
the positions of a subset of B type nodes, we find new
optimal coordinates for a subset of type A nodes. First,
we compute the mean coordinates of type A node u’s
neighbors.

xu =
∑
v

1

κ2
v

xv (8)

where the sum goes of all neighbors of node u, i.e., nodes
of type B. Later, the new positions around xu are pro-
posed using a multivariate normal distribution. Finally,
we select the most likely candidate position based on the
local log-likelihood

lnLu =

NB∑
v=0

auv ln puv + (1− auv) ln(1− puv) (9)

After iterating over a subset of nodes of type A, we apply
a similar approach to nodes of type B, and repeat the
process until all node positions are adjusted.

d. Final adjustment of hidden degrees Lastly, we ad-
just the hidden degree to compensate deviations from
k̄A(κu) = κu and k̄B(κv) = κv, which might have been
introduced during the estimation of the nodes’ coordi-
nates in the similarity space.
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C. Real bipartite datasets

The Unicodelang dataset was downloaded from the
Unicode CLDR Project GitHub repository [9]. The
dataset1 contains information about the languages spo-
ken in a given territory. We preprocessed this dataset and
matched the country codes to their geographical regions2.
In total, the bipartite graph contains 246 countries, 717
languages, and 1487 edges.

The metabolic network was extracted from the BiGG
webpage [28]. We focus on the RECON1 model, which
corresponds to Homo sapiens. The data was prepro-
cessed and cleaned, resulting in 1497 metabolites and
2212 chemical reactions.

The flavor network is a network of food ingredients
based on the flavor compounds they share [29]. After
preprocessing, the total number of ingredients is 602, and
the number of compounds is 1138. The bipartite graph
contains 15,382 edges. Additional network properties and
inferred values of βb for different embedding dimensions
are shown in Supplementary Table 1.

ACKNOWLEDGMENTS

We acknowledge support from:
Grant TED2021-129791B-I00 funded by

MCIN/AEI/10.13039/501100011033 and the
“European Union NextGenerationEU/PRTR”;
Grant PID2019-106290GB-C22 funded by
MCIN/AEI/10.13039/501100011033; Generalitat de
Catalunya grant number 2021SGR00856. R. J. acknowl-
edges support from the fellowship FI-SDUR funded
by Generalitat de Catalunya. M. B. acknowledges the
ICREA Academia award, funded by the Generalitat de
Catalunya.

V. DATA AVAILABILITY

The network datasets used in this study are available
from the sources referenced in the manuscript and the
Supplementary Information.

VI. CODE AVAILABILITY

The open-source code for B-Mercator, along with
the code to reproduce the figures, will available
on GitHub at https://github.com/networkgeometry/
b-mercator upon publication.

[1] M. E. J. Newman, Proc Natl Acad Sci USA 98, 404
(2001).

[2] M. E. Newman, Physical review E 64, 016131 (2001).
[3] M. E. Newman, Physical review E 64, 016132 (2001).
[4] M. E. J. Newman, Proceedings of the Na-

tional Academy of Sciences 101, 5200 (2004),
https://www.pnas.org/doi/pdf/10.1073/pnas.0307545100.

[5] Y. Koren, R. Bell, and C. Volinsky, Computer 42, 30
(2009).

[6] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker,
L. R. Gordon, and J. Riedl, Communications of the ACM
40, 77 (1997).

[7] G. Linden, B. Smith, and J. York, IEEE Internet com-
puting 7, 76 (2003).

[8] A. Davis, B. B. Gardner, and M. R. Gardner, Deep
South: A social anthropological study of caste and class
(Univ of South Carolina Press, 2009).

[9] U. Consortium, “Unicode Common Locale Data Repos-
itory (CLDR),” (2024), available at: https://github.
com/unicode-org/cldr (Accessed: 2024-11-15).

[10] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L.
Barabási, Nature 407, 651 (2000).

[11] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai,
and A.-L. Barabási, Science 297, 1551 (2002).

1 https://github.com/unicode-org/cldr/blob/main/common/
supplemental/supplementalData.xml

2 https://github.com/lukes/ISO-3166-Countries-with-Regional-Codes

[12] M. Á. Serrano, M. Boguñá, and F. Sagués, Mol. Biosyst.
8, 843 (2012).

[13] J. Bascompte, P. Jordano, C. J. Melián, and J. M. Ole-
sen, Proceedings of the National Academy of Sciences
100, 9383 (2003).

[14] J. M. Olesen, J. Bascompte, Y. L. Dupont, and P. Jor-
dano, Proceedings of the national academy of sciences
104, 19891 (2007).

[15] R. Aliakbarisani, M. Serrano, and M. Boguñá, arXiv
preprint arXiv:2307.14198 (2023).

[16] T. Zhou, J. Ren, M. Medo, and Y.-C. Zhang, Phys-
ical Review E—Statistical, Nonlinear, and Soft Matter
Physics 76, 046115 (2007).

[17] Z. Neal, Social Networks 39, 84 (2014).
[18] M. Boguñá, I. Bonamassa, M. D. Domenico, S. Havlin,

D. Krioukov, and M. Á. Serrano, Nat. Rev. Phys. 3, 114
(2021).

[19] M. Á. Serrano, D. Krioukov, and M. Boguñá, Phys. Rev.
Lett. 100, 078701 (2008).

[20] A. Allard, M. Á. Serrano, and M. Boguñá, Nature
Physics 20, 150 (2024).

[21] A. Allard, M. Á. Serrano, G. García-Pérez, and
M. Boguñá, Nat. Commun. 8, 14103 (2017).

[22] K.-K. Kleineberg, M. Boguñá, M. Á. Serrano, and F. Pa-
padopoulos, Nat. Phys. 12, 1076 (2016).

[23] K.-K. Kleineberg, L. Buzna, F. Papadopoulos,
M. Boguñá, and M. Á. Serrano, Phys. Rev. Lett.
118, 218301 (2017).

[24] M. Kitsak, F. Papadopoulos, and D. Krioukov, Phys Rev
E 95, 032309 (2017).

https://github.com/networkgeometry/b-mercator
https://github.com/networkgeometry/b-mercator
http://dx.doi.org/10.1073/pnas.0307545100
http://dx.doi.org/10.1073/pnas.0307545100
http://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.0307545100
https://github.com/unicode-org/cldr
https://github.com/unicode-org/cldr
https://github.com/unicode-org/cldr/blob/main/common/supplemental/supplementalData.xml
https://github.com/unicode-org/cldr/blob/main/common/supplemental/supplementalData.xml
https://github.com/lukes/ISO-3166-Countries-with-Regional-Codes
http://dx.doi.org/10.1039/c2mb05306c
http://dx.doi.org/10.1039/c2mb05306c
http://dx.doi.org/https://doi.org/10.1038/s42254-020-00264-4
http://dx.doi.org/https://doi.org/10.1038/s42254-020-00264-4
http://dx.doi.org/10.1103/PhysRevLett.100.078701
http://dx.doi.org/10.1103/PhysRevLett.100.078701
http://dx.doi.org/10.1038/s41567-023-02246-6
http://dx.doi.org/10.1038/s41567-023-02246-6
http://dx.doi.org/ 10.1038/ncomms14103
http://dx.doi.org/10.1038/nphys3812
http://dx.doi.org/10.1103/PhysRevLett.118.218301
http://dx.doi.org/10.1103/PhysRevLett.118.218301
http://dx.doi.org/10.1103/PhysRevE.95.032309
http://dx.doi.org/10.1103/PhysRevE.95.032309


[25] T. Opsahl, Social Networks 35, 159 (2013), special Issue
on Advances in Two-mode Social Networks.

[26] G. García-Pérez, A. Allard, M. Á. Serrano, and
M. Boguñá, New J. Phys. 21, 123033 (2019).

[27] R. Jankowski, A. Allard, M. Boguñá, and M. Á. Serrano,
Nature Communications 14, 7585 (2023).

[28] Z. A. King, J. Lu, A. Dräger, P. Miller, S. Federowicz,
J. A. Lerman, A. Ebrahim, B. O. Palsson, and N. E.
Lewis, Nucleic acids research 44, D515 (2016).

[29] Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, and A.-L.
Barabási, Scientific reports 1, 196 (2011).

[30] M. Boguñá, D. Krioukov, and K. C. Claffy, Nat Phys 5,
74 (2009).

[31] P. Almagro, M. Boguñá, and M. Á. Serrano, Nat. Com-
mun. 13, 6096 (2022).

[32] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu,
M. Catasta, and J. Leskovec, Advances in neural infor-
mation processing systems 33, 22118 (2020).

[33] F. Xia, K. Sun, S. Yu, A. Aziz, L. Wan, S. Pan, and
H. Liu, IEEE Transactions on Artificial Intelligence 2,
109 (2021).

[34] R. Jankowski, P. Hozhabrierdi, M. Boguñá, and M. Á.
Serrano, npj Complexity 1, 13 (2024).

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al., Journal of machine learning
research 12, 2825 (2011).

http://dx.doi.org/https://doi.org/10.1016/j.socnet.2011.07.001
http://dx.doi.org/ 10.1088/1367-2630/ab57d2
http://dx.doi.org/10.1038/nphys1130
http://dx.doi.org/10.1038/nphys1130
http://dx.doi.org/10.1038/s41467-022-33685-z
http://dx.doi.org/10.1038/s41467-022-33685-z


Supplementary Information for “Mapping bipartite networks into multidimensional
hyperbolic spaces”

Robert Jankowski,1, 2 Roya Aliakbarisani,1, 2 M. Ángeles Serrano,1, 2, 3 and Marián Boguñá1, 2, ∗

1Departament de Física de la Matèria Condensada,
Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain

2Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
3ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain

CONTENTS

1. Time complexity analysis 2

2. Quality of embeddings for D = {1, 2, 3} 2

3. Inference of the parameter βb 4

4. Validation of the embeddings for synthetic networks 5

5. Greedy routing in the bipartite synthetic networks 10

6. Real bipartite networks 12

7. Unsupervised graph embeddings 23

8. Machine learning datasets 24

9. Node classification 25

10. Distance-based Link prediction 29

11. Validation of the topological properties for the machine learning datasets 38

Supplementary References 41

∗ marian.boguna@ub.edu



2

1. TIME COMPLEXITY ANALYSIS
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FIG. S1: Time complexity of B-Mercator. We generated synthetic networks from the bipartite-S2 model and
embedded them in D = 1 and D = 2. We simultaneously increased the sizes of type A and B nodes to keep the
average degree of type B nodes constant. The remaining parameters are: (γA, γB , 〈kA〉 , βb) = (2.7, 2.7, 10, 2). The
results are averaged over 10 realizations. Simulations were carried out on an Intel i7-7700K (8 cores, 4.5 GHz) with

16 GB of RAM.

2. QUALITY OF EMBEDDINGS FOR D = {1, 2, 3}

0 π/2 π 3π/2 2π
θtrue

0

π/2

π

3π/2

2π

θi
n

f

ρ = 0.832

Nodes A

0 π/2 π 3π/2 2π
θtrue

θi
n

f

ρ = 0.872

Nodes B

FIG. S2: Relationship between the inferred and the true coordinates for D = 1. The rest of the parameters are:
(NA, NB , γA, γB , 〈kA〉 , βb) = (500, 1000, 2.7, 2.1, 10, 1.5).
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FIG. S3: Relationship between the inferred and the true coordinates for D = 2. The rest of the parameters are:
(NA, NB , γA, γB , 〈kA〉 , βb) = (500, 1000, 2.7, 2.7, 10, 3).
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FIG. S4: Relationship between the inferred and the true coordinates for D = 3. The rest of the parameters are:
(NA, NB , γA, γB , 〈kA〉 , βb) = (500, 1000, 3.5, 3.5, 10, 3).

3. INFERENCE OF THE PARAMETER βb
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4. VALIDATION OF THE EMBEDDINGS FOR SYNTHETIC NETWORKS
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FIG. S6: Validation of the embeddings of the biparite synthetic network in D = 1. The first row shows the
complementary cumulative degree distribution of type A and B nodes (a, b) and the clustering spectrum for type A
nodes (c). The second rows shows the clustering spectrum for type B nodes (d) and the average nearest neighbors
degree for type A and B nodes (e, f). Symbols correspond to the value of these quantities in the original network,
whereas the lines indicate an estimate of their expected values in the ensemble of random networks in a given
dimension inferred by B-Mercator. This ensemble was sampled by generating 10 synthetic networks with the

bipartite-SD model and the inferred parameters and positions by B-Mercator. The error bars show the 2σ confidence
interval around the expected value. The third row shows scattered plots of the sum of the degrees of their neighbors
(g, h) and the number of triangles to which they participate (i). The plots show the estimated values of these two

measures in the same ensemble of random networks considered above versus the corresponding values in the original
network. The last row depicts the comparison of the expected connection probability based on the inferred value of

βb (expected) and the actual connection probability computed with the inferred hidden variables (k).
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5. GREEDY ROUTING IN THE BIPARTITE SYNTHETIC NETWORKS
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FIG. S11: Bipartite greedy routing (BGR) in the synthetic networks. Fraction of the succesful paths as a function of
embedded dimension for four variants of the BGR. Results are obtained by averaging over 10 realizations with

(NA, NB , γA, γB , 〈kA〉 , βb) = (500, 500, 2.5, 3.5, 10, 2.5).
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FIG. S12: Bipartite greedy routing (BGR) in the synthetic networks. Mean stretch as a function of embedded
dimension for four variants of the BGR. Results are obtained by averaging over 10 realizations with

(NA, NB , γA, γB , 〈kA〉 , βb) = (500, 500, 2.5, 3.5, 10, 2.5).
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6. REAL BIPARTITE NETWORKS

Dataset NA NB 〈kA〉 〈kB〉 cb,A cb,B βb,1 βb,2 βb,3 βb,4

Unicodelang 246 717 6.05 2.07 0.307 0.398 1.008 4.294 4.945 5.207
Metabolic 1497 2212 7.23 4.89 0.382 0.448 1.478 3.682 4.833 6.392
Flavor 602 1138 26.34 13.94 0.382 0.412 1.010 2.706 3.616 4.293

TABLE S1: Properties of real bipartite networks. The NA (NB) represents number of type A (type B) nodes in the
network. The 〈kA〉 (〈kB〉) the average number of type A (type B) nodes. The c̄b,A (c̄b,B) is the bipartite clustering
for type A (type B) nodes. Lastly, βb,D is the inferred inverse temperature for the bipartite network in dimension D.

Dataset ps,1 ps,2 ps,3 ps,4 MS1 MS2 MS3 MS4

Unicodelang 0.74 0.71 0.75 0.76 1.41 1.42 1.41 1.41
Metabolic 0.36 0.09 0.10 0.16 1.30 1.31 1.30 1.31
Flavor 0.45 0.26 0.30 0.31 1.48 1.47 1.46 1.46

TABLE S2: Bipartite greedy routing results in real bipartite networks. We focus on the variant of BGR, where we
forward messages from type A nodes to type A nodes. The ps,D represents the fraction of the successful paths for a

given dimension D. Whereas MSD is the mean stretch in dimension D. We highlight the highest ps,D for each
dataset with a blue color.
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FIG. S13: Visualization of the S1 embedding of the Unicodelang dataset per language. Panels show
countries where a given language is spoken. The size of the nodes is proportional to the number of language

speakers in that country. The color corresponds to the geographical region in which the country is located. A star
marker indicates the position of a given language.
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FIG. S15: Topological validation of the Unicodelang dataset in which type A nodes are countries and type B nodes
are languages. See caption in Fig. S6 for more details.
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FIG. S16: Visualization of the bipartite hyperbolic embeddings of the Metabolic dataset per
metabolite or reaction in D = 1 and D = 2. Panels (a, b) show positions of all reactions connected to the H2O2
metabolite, whereas panels (c, d) all metabolites having a link to a NADS2 reaction (Nicotinate-mononucleotide

adenylyltransferase). The size of the nodes is proportional to the nodes’ degree. The color in panels (a, b)
corresponds to the reaction category. A star marker indicates the position of a given metabolite or reaction.

Here, we focus on the human metabolic network, defined as metabolites connected to the reactions they participate
in [1]. B-Mercator is able to reproduce topological properties of the metabolic network, such as degree distributions
and clustering spectra (see Figure S18). Figures S16a,b show all reactions in which the metabolite H2O2 is present
from embeddings for D = 1 and D = 2. We can distinguish two main reaction clusters corresponding to Nucleotide
Metabolism and Lipid Metabolism reaction types. The H2O2 metabolite is located between these two communities.
In Figure S17, we plot the angular distribution for each reaction type for the embedding in D = 1. In Figures S16c,d,
we plot all metabolites participating in the NADS2 reaction. Nicotinate-mononucleotide adenylyltransferase is a key
enzyme that helps produce NAD, a molecule essential for generating energy and supporting various vital processes in
cells. One can observe that the metabolites H and H2O are located close to the center of the hyperbolic disk. These
metabolites are hubs in the bipartite network and participate in many chemical reactions.
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are reactions. See caption in Fig. S6 for more details.
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FIG. S19: Visualization of the bipartite hyperbolic embeddings of the Flavor dataset per ingredient or
chemical compound in D = 1 and D = 2. Panels (a, b) show positions of all ingredients connected to the
vanillin compound whereas panels (c, d) all compounds having a link to a vinegar. The size of the nodes is

proportional to the nodes’ degree. The color in panels (a, b) corresponds to the ingredient category. A star marker
indicates the position of a given compound or ingredient.

As an another example, here, we focus on the network of food ingredients based on the flavor compounds they
share [2]. In [2], the Flavor network has been analyzed by projecting an ingredient-compound bipartite network into
the ingredient space in which nodes are ingredients, linked if they share at least one flavor compound. However, our
method works directly on the bipartite network without the need to project it into the unipartite network. This is
an key point of our approach since one-mode projections can distort important information of the original bipartite
network [3, 4].
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FIG. S20: Visualization of the S1 and S2 embeddings of the Flavour dataset per chemical compound.
Panels show the positions of all ingredients connected to a given chemical compound. The size of the nodes is
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position of a given compound.
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nodes’ degree. A star marker indicates the position of a given ingredient.
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7. UNSUPERVISED GRAPH EMBEDDINGS

Here we provide a short summary of each machine learning method.

• DeepWalk [5] uses random walks to approximate the pointwise mutual information matrix obtained by pooling
normalized adjacency matrix powers. This matrix is decomposed by an approximate factorization technique.

• Role2Vec [6] uses random walks to approximate the pointwise mutual information matrix obtained by multiplying
the pooled adjacency power matrix with a structural feature matrix (in this case Weisfeiler-Lehman features).
This way one gets structural node embeddings.

• NetMF [7] uses sparse truncated SVD to learn embeddings for the pooled powers of the pointwise mutual
information matrix computed from powers of the normalized adjacency matrix.

• LaplacianEigenmaps [8] extracts the eigenvectors corresponding to the largest eigenvalues of the graph Laplacian.
These vectors are used as the node embedding.

• FeatherNode [9] uses characteristic functions of node features with random walk weights to describe node
neighborhoods.

• MUSAE [10] performs attributed random walks to approximate the pooled adjacency matrix power node feature
matrix product. The matrix is decomposed implicitly by a Skip-Gram style optimization problem.

• UMAP [11] is a dimension reduction technique that takes a node feature matrix and maps it into a low-
dimensional Euclidean space.
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8. MACHINE LEARNING DATASETS

• Film [12]. Actor co-occurrence network. This dataset is the actor-only induced subgraph of the film-
directoractor-writer network. Each nodes correspond to an actor, and the edge between two nodes denotes
co-occurrence on the same Wikipedia page. Node features correspond to some keywords in the Wikipedia pages.
The nodes are classfied into five categories in term of words of actor’s Wikipedia.

• IMDB [13]: The Movie-Actor-Movie relation dataset. Movies are categorized into three classes (Action, Comedy,
Drama).

• Citeseer [14]: The citation network of Machine Learning papers where each publication is described by a 0 or 1
valued word vector indicating the absence or the presence of the corresponding word from the dictionary. The
dictionary consists of 1433 unique words. The publications are classified into six classes.

• Cora [15]: Similar to Citeseer, however the publications are split into seven classes: Case Based, Genetic
Algorithms, Neural Networks, Probabilistic Methods, Reinforcement Learning, Rule Learning, Theory.

• Cornell, Wisconsin, Texas [16]: Web graphs crawled from three Computer Science departments in 1998, with
each page manually classified into one of seven categories: course, department, faculty, project, staff, student,
or other.

Dataset N Nl 〈k〉 c β Nf 〈kn〉 〈kf 〉 cb,n cb,f βb corr(G, F )

Film 7600 5 7.02 0.10 1.0370 932 5.39 43.97 0.513 0.394 1.5207 0.039
IMDB 3228 3 19.46 0.55 2.3276 2000 76.96 124.21 0.077 0.071 1.0170 0.172
Cora 2485 7 4.08 0.28 1.5686 1428 18.3 31.85 0.134 0.1 1.0094 0.650
Citeseer 2110 6 3.48 0.23 1.4672 3604 32.07 18.77 0.122 0.13 1.0108 0.763
Wisconsin 251 7 3.59 0.28 1.0074 1613 95.85 14.91 0.582 0.434 1.0419 0.201
Texas 183 7 3.05 0.32 1.0071 1500 83.42 10.18 0.57 0.413 1.0112 0.116
Cornell 183 7 3.03 0.29 1.0061 1582 94.21 10.90 0.56 0.399 1.0293 0.169

TABLE S3: Properties of real networks. The N represents number of nodes in the unipartite network, Nl the
number of node labels, 〈k〉 the average degree, c̄ the average clustering coefficient and β the inferred inverse

temperature for D = 1. Meanwhile, Nf corresponds to the number of features, 〈kn〉 the average number of nodes
per feature, 〈kf 〉 the average number of features per node. The c̄b,n (c̄b,f ) is the bipartite clustering for nodes
(features). The βb is the inferred inverse temperature for the bipartite network in D = 1. Lastly, corr(G, F ) is a

measure of correlation between network structure and nodes’ features defined in [17]. The higher the obtained value
the more correlated are features with the network topology.
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9. NODE CLASSIFICATION

We perform a node classification task on popular machine learning datasets.
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FIG. S24: Accuracy of the node classification task for IMDB dataset. See caption in Fig. S23 for more details.
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FIG. S25: Accuracy of the node classification task for Cora dataset. See caption in Fig. S23 for more details.
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FIG. S26: Accuracy of the node classification task for Citeseer dataset. See caption in Fig. S23 for more details.
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FIG. S27: Accuracy of the node classification task for Wisconsin dataset. See caption in Fig. S27 for more details.
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FIG. S28: Accuracy of the node classification task for Texas dataset. See caption in Fig. S23 for more details.
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FIG. S29: Accuracy of the node classification task for Cornell dataset. See caption in Fig. S23 for more details.
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FIG. S30: The rank of network embedding methods across all datasets for the node classification task.



29

10. DISTANCE-BASED LINK PREDICTION
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FIG. S31: Balanced precision of the distance-based link prediction task for the Film Dataset. The train/test sets are
generated by randomly selecting a fraction q = 0.1 of existing links as positive samples, along with an equal number
of randomly selected non-existing links as negative samples, ensuring a balanced test set. The remaining existing

links form the training set. For balanced precision, assume the test set contains L positive and L negative links. The
links are then sorted in ascending order based on their similarity scores, which are defined as the inverse of the

hyperbolic distance between node pairs in S1, S2, bipartite-S1, and bipartite-S2, and as the inverse of the Euclidean
distance between node pairs for the other methods. The balanced precision is then computed as the proportion of

true positive links among the top L ranked predictions. The results are averaged over 10 different splits. Our
methods are highlighted with diagonal hatches. The abbreviations of the algorithms are as follows: DW –
DeepWalk, R2V – Role2Vec, LE – Laplacian Eigenmaps, FN – FeatherNode. The numeric value in brackets

indicates the embedding dimension. All other parameters are set to their default values.
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FIG. S32: Balanced precision of the distance-based link prediction task for IMDB dataset. See caption in Fig. S31
for more details.

M
U

S
A

E
*

(8
)

M
U

S
A

E
*

(1
6)

M
U

S
A

E
*

(4
)

F
N

*
(8

)

S2
(2

)

S1
(1

)

F
N

*
(1

6)

F
N

*
(4

)

D
W

(8
)

M
U

S
A

E
*

(2
)

D
W

(1
6)

D
W

(4
)

F
N

*
(2

)

D
W

(2
)

R
2V

(8
)

R
2V

(1
6)

U
M

A
P

(1
6)

U
M

A
P

(8
)

U
M

A
P

(4
)

R
2V

(4
)

U
M

A
P

(2
)

bi
pa

rt
it

e-
S2

(2
)

L
E

(1
6)

bi
pa

rt
it

e-
S1

(1
)

N
et

M
F

(8
)

N
et

M
F

(1
6)

N
et

M
F

(4
)

N
et

M
F

(2
)

R
2V

(2
)

L
E

(8
)

L
E

(4
)

L
E

(2
)

0.4

0.5

0.6

0.7

0.8

B
al

an
ce

d
P

re
ci

si
on

Cora

Network-based

Feature-based

Feature+Network-based

FIG. S33: Balanced precision of the distance-based link prediction task for Cora dataset. See caption in Fig. S31 for
more details.
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FIG. S34: Balanced precision of the distance-based link prediction task for Citeseer dataset. See caption in Fig. S31
for more details.
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FIG. S35: Balanced precision of the distance-based link prediction task for Wisconsin dataset. See caption in
Fig. S31 for more details.
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FIG. S36: Balanced precision of the distance-based link prediction task for Texas dataset. See caption in Fig. S31
for more details.
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FIG. S37: Balanced precision of the distance-based link prediction task for Cornell dataset. See caption in Fig. S31
for more details.
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FIG. S39: AUC of the distance-based link prediction task for the Film Dataset. The train/test sets are generated by
randomly selecting a fraction q = 0.1 of existing links as positive samples, along with an equal number of randomly
selected non-existing links as negative samples, ensuring a balanced test set. The remaining existing links are used
to form the training set. Similarity scores between node pairs in the test set are computed as the inverse of the

hyperbolic distance between node pairs in S1, S2, bipartite-S1, and bipartite-S2, and as the inverse of the Euclidean
distance between node pairs for the other methods. The AUC is then calculated as the area under the receiver
operating characteristic (ROC) curve, which plots the true positive rate against the false positive rate at various

similarity thresholds for the test set. The results are averaged over 10 different splits. Our methods are highlighted
with diagonal hatches. The abbreviations of the algorithms are as follows: DW – DeepWalk, R2V – Role2Vec, LE –
Laplacian Eigenmaps, FN – FeatherNode. The numeric value in brackets indicates the embedding dimension. All

other parameters are set to their default values.
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FIG. S40: AUC of the distance-based link prediction task for IMDB dataset. See caption in Fig. S39 for more details.
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FIG. S41: AUC of the distance-based link prediction task for Cora dataset. See caption in Fig. S39 for more details.
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FIG. S42: AUC of the distance-based link prediction task for Citeseer dataset. See caption in Fig. S39 for more
details.
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FIG. S43: AUC of the distance-based link prediction task for Wisconsin dataset. See caption in Fig. S39 for more
details.
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FIG. S44: AUC of the distance-based link prediction task for Texas dataset. See caption in Fig. S39 for more details.
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FIG. S45: AUC of the distance-based link prediction task for Cornell dataset. See caption in Fig. S39 for more
details.
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FIG. S46: The rank by AUC of network embedding methods across all datasets for the distance-based link
prediction task.
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11. VALIDATION OF THE TOPOLOGICAL PROPERTIES FOR THE MACHINE LEARNING
DATASETS
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FIG. S47: Validation of the embeddings for Cora dataset. Plots (a-f) depict the topological properties of the
unipartite networks. Meanwhile, plots (g-q) topological properties for the bipartite network, i.e., nodes’ features. (a)
Complementary cumulative degree distribution. (b) Clustering spectrum. (c) Average nearest neighbors degree in

the function of degree. Scatter plots of the number of triangles (d) and the sum of degrees of their neighbors (e). (f,
g) The expected connection probability is based on the inferred value of β (βb) (expected), and the actual
connection probability is computed with the inferred hidden variables. Complementary cumulative degree

distribution of (h) nodes and (i) features. Clustering spectrum of (j) nodes and (k) features. Average nearest
neighbors degree of nodes (l) and features (m) in function of degree. Scatter plots of the sum of degrees of nodes (n)
and features (o) of their neighbors and the number of triangles for nodes (p) and features (q). Symbols in (a-c,h-m)
correspond to the value of these quantities in the original network, whereas the lines indicate an estimate of their
expected values in the ensemble of random networks in a given dimension inferred by B-Mercator. This ensemble
was sampled by generating 10 synthetic networks with the bipartite-SD model and the inferred parameters and

positions by B-Mercator. The error bars show the 2σ confidence interval around the expected value. The plots (d, e,
n-q) show the estimated values of these two measures in the same ensemble of random networks considered above

versus the corresponding values in the original network.
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FIG. S48: Validation of the embedding for Citeseer dataset. See caption in Fig. S47 for more details.
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FIG. S49: Validation of the embedding for Wisconsin dataset. See caption in Fig. S47 for more details.
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