
Hyperbolic Benchmarking Unveils Network
Topology-Feature Relationship in GNN Performance

Roya Aliakbarisani∗
Universitat de Barcelona & UBICS
roya_aliakbarisani@ub.edu

Robert Jankowski∗
Universitat de Barcelona & UBICS
robert.jankowski@ub.edu

M. Ángeles Serrano
Universitat de Barcelona, UBICS & ICREA

marian.serrano@ub.edu

Marián Boguñá
Universitat de Barcelona & UBICS

marian.boguna@ub.edu

Abstract

Graph Neural Networks (GNNs) have excelled in predicting graph properties in
various applications ranging from identifying trends in social networks to drug
discovery and malware detection. With the abundance of new architectures and
increased complexity, GNNs are becoming highly specialized when tested on a
few well-known datasets. However, how the performance of GNNs depends on
the topological and features properties of graphs is still an open question. In this
work, we introduce a comprehensive benchmarking framework for graph machine
learning, focusing on the performance of GNNs across varied network structures.
Utilizing the geometric soft configuration model in hyperbolic space, we generate
synthetic networks with realistic topological properties and node feature vectors.
This approach enables us to assess the impact of network properties, such as
topology-feature correlation, degree distributions, local density of triangles (or
clustering), and homophily, on the effectiveness of different GNN architectures.
Our results highlight the dependency of model performance on the interplay be-
tween network structure and node features, providing insights for model selection
in various scenarios. This study contributes to the field by offering a versatile tool
for evaluating GNNs, thereby assisting in developing and selecting suitable models
based on specific data characteristics.

1 Introduction

Graph Neural Networks (GNNs) [29, 36, 37, 39], derived from Convolutional Neural Networks for
graph-structured data, use recursive message passing between nodes and their neighbors. These
models leverage graph topology and node-specific features to map nodes into a learnable embedding
space. GNNs have evolved to encompass a wide variety of architectures and tasks, ranging from
node and graph classifications to link prediction. Despite this growing interest in the development of
GNNs, the fundamental issue of homogeneity in benchmarking datasets persists in GNN research,
making it challenging to determine the most suitable GNN model for unseen datasets. In addition,
since GNNs are data-driven models tailored to specific tasks, there is a potential concern of overfitting
new architectures to given datasets, especially when the data have similar structural properties [27].
Thus, a fair comparison between different models in reproducible settings is required.

In this work, we propose a comprehensive benchmarking scheme for graph neural networks. Utilizing
a Hyperbolic Soft Configuration Network Model with Features (HypNF) [3], we generate synthetic
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networks with realistic topological properties where node features can be correlated with the network
topology. This highly flexible model allows us to evaluate GNNs in depth across various scenarios.
Moreover, we suggest using the benchmark as a tool for optimal model selection by analyzing
the inherent properties of the real dataset. Although the use of hyperbolic geometry might appear
superfluous, it has been demonstrated that it is the simplest method for generating geometric random
graphs that uniquely combine several key characteristics: They have power law degree distributions,
exhibit small-world properties, and are highly clustered, meaning they have a high density of
triangles [6]. These traits closely mirror those observed in real complex networks.

We aim to show the crucial factors, including the network’s structural properties and the degrees of
correlation between nodes and features—controlled by the framework parameters—that influence
the performance of graph machine learning models. Employing the proposed benchmark, we
systematically compare the performance of well-known GNNs and evaluate models that solely utilize
node features. Our study aims to evaluate machine learning models in two fundamental graph-based
tasks: node classification (NC) and link prediction (LP).

Here, we highlight the main contributions of our empirical study, which provides insights into the
suitability of the various models under different network conditions. It will, thus, benefit applications
and the community focused on developing new GNN algorithms.

• Our framework generates benchmark networks with tunable levels of topology-feature corre-
lation, homophily, clustering, degree distributions, and average degrees. This approach cov-
ers the most important properties of a wide range of real datasets, providing a comprehen-
sive tool for their analysis. The code and the datasets will be publicly available at https:
//github.com/networkgeometry/hyperbolic-benchmark-gnn under the MIT License.

• GNNs exhibit varying levels of performance fluctuation under a fixed set of parameters. Notably,
HGCN [9] shows less robustness compared to GCN [18] when the network’s average degree is low.
However, this trend reverses in networks with homogeneous degree distributions.

• The stronger the correlation between the network topology and node features, the better GNNs and
feature-based models perform in NC and LP.

• The hyperbolic-based models, specifically HGCN and HNN [12], achieve the highest AUC
scores [25] in LP task. Remarkably, HNN, despite being solely a feature-based method, out-
performs traditional graph-based models across various parameters.

• In the NC task, where no information about the graph data is available, emphasis should be placed
on model interpretability and time complexity. This is crucial since the accuracy of graph-based
models tends to be uniformly high, making these factors significant differentiators.

2 Related work

With the continuous evolution of graph machine learning, there is a growing necessity to comprehend
and evaluate the performance of GNN architectures. In this respect, benchmarking can provide a fair
and standardized way to compare different models. The Open Graph Benchmark (OGB) [15] stands
as a versatile tool to assess the performance of the GNNs. Yet, its emphasis on a limited range of
actual networks indicates that it does not encompass all network characteristics and falls short in terms
of parameter manipulation. Consequently, this highlights the necessity for creating benchmarking
tools based on synthetic data. Such tools would allow for the assessment of GNNs in a controlled
environment and across a more extensive array of network properties [34, 24, 23]. One of them is
GraphWorld [27], which is a synthetic network generator utilizing the Stochastic Block Model (SBM)
to generate graphs with communities. It employs a parametrized community distribution and an edge
probability matrix to randomly assign nodes to clusters and establish connections. Node features
are also generated using within-cluster multivariate normal distributions. A fixed edge probability
matrix in SBM prevents GraphWorld from faithfully replicating a predefined degree sequence and
generating graphs with true power-law distributions. To overcome this limitation, Ref. [38] integrates
Graphworld with two other generators: Lancichinetti-Fortunato-Radicchi (LFR) [20] and CABAM
(Class-Assortative graphs via the Barabási-Albert Model) [32]. This integration broadens the coverage
of the graph space, specifically for the NC task. In this paper, we propose an alternative network
generators: a framework based on the geometric soft configuration model. This model’s underlying
geometry straightforwardly couples the network topology with node features and labels. This
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Table 1: Comparison of HypNF and other synthetic network generators. The ✓indicates control over
a given property, ✗ indicates lack of control, and ∝ indicates indirect control. The P (k) is the degree
distribution, ⟨c⟩ is the clustering coefficient, ⟨k⟩ is the average degree. Whereas P (kn) and P (kf )
are the degree distributions of nodes and features, respectively, ⟨kn⟩ and ⟨kf ⟩ are the average degrees
of nodes and features, respectively, and H represents homophily.

P (k), Power-law ⟨c⟩ ⟨k⟩ P (kn), P (kf ) ⟨kn⟩, ⟨kf ⟩ Topology-Feature
Correlation H Underlaying mechanism/

Connectivity law

HypNF ✓, ✓ ✓ ✓ ✓,✓ ✓,✓ ✓ ✓ geometric
GraphWorld (SBM) [27] ✓, Quasi power-law ∝ ✓ ✗, normal ✗, ✓ ∝ ✓ probability matrix
GraphWorld (CABAM) [38] ✗, ✓ ∝ ✓ ✗, normal ✗, ✓ ∝ ✓ preferential attachement
GraphWorld (LFR) [38] ✓,✓ ∝ ✓ ✗, normal ✗, ✓ ∝ ✓ class-aware configuration model
GenCAT [24, 23] ✓, ✓ ∝ ✓ ✗, (normal, Bernoulli) ✗, ✓ ∝ ✓ latent variables
FastSGG [34] ✓, ✓ ∝ ✓ ✗ , ✗ ✗, ✗ ✗ ✓ preferential attachment

capability enables independent control over the clustering coefficient in both the unipartite network
of nodes and the bipartite network of nodes and features, irrespective of the degree distributions of
nodes and features (see Fig. 6 in Appendix B). Table 1 presents a comparison between HypNF and
several state-of-the-art benchmarking frameworks, highlighting the properties each can control.

3 HypNF Model

Graph-structured data are characterized by group of Nn nodes that create a complex network Gn,
along with a collection of Nf features linked to these nodes. Typically, these features are converted
into binary form. Therefore, for any given node i, its feature set is depicted as a vector f⃗i ∈ {0, 1}Nf .
This vector has elements that are either zero or one, depending on whether a specific feature is present
or absent. An alternative approach considers that nodes and features form a bipartite graph, Gn,f ,
with nodes defining one of the types of elements of the graph and features the other [3]. Within this
approach, the full information of the data is encoded into the two networks Gn and Gn,f . Interestingly,
in [3], the topological properties of the bipartite graph Gn,f of real graph-structured datasets were
first studied, showing a rich and complex topological organization.

A remarkable finding in [3, 17] is the detection of strong correlations between the graphs Gn and
Gn,f within real datasets. This suggested the possibility to describe Gn,f as a geometric random
graph in the same hyperbolic space used to describe the graph Gn so that the shared metric space
would mediate the correlation between them. Building on this concept, the study in [3] introduces
a generative model that produces networks Gn and Gn,f , with experimental results demonstrating
their ability to accurately reproduce key topological properties observed in real datasets, including
degree distribution, clustering coefficient, and average nearest neighbor degree function (see Fig. 5
in Appenix A). We will now provide a detailed description of this model, which is used to create
synthetic datasets for evaluating the performance of GNNs.

3.1 The S1/H2 model

The network Gn is modeled by the S1/H2 model [31, 19, 30]. This geometric soft configuration
model produces synthetic networks with realistic topological properties, including arbitrary de-
gree distributions [31, 19, 14], the small-world property [1, 11, 26], self-similarity [31], and high
clustering [7, 19, 14, 8, 10], to name just a few. See also [6] and references therein.

In the S1 model a node is endowed with a hidden degree κ, representing its popularity, influence
or importance. Hidden (or expected) degrees are distributed by an arbitrary probability density
ρ(κ), with κ ∈ (κ0,∞). In this way, the model has the flexibility to reproduce a variety of degree
distributions. Each node is also assigned with an angular position θ in the similarity space, represented
as a one-dimensional sphere 2. Then, pairs of nodes are connected with a probability function taking
the form of a gravity law, balancing the interplay between node angular distances and their hidden
degrees:

p(κ, κ′,∆θ) =
1

1 + χβ
with χ ≡ R∆θ

µκκ′ , (1)

2The model with arbitrary dimensions has been defined in [16].
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Figure 1: (a) Representation of HypNF benchmarking framework to generate rich graph-structured
data. (b) Hyperbolic representation of a synthetic network with Nn = 2000 nodes represented as
circles, where colors indicate their labels, and Nf = 200 features depicted as purple squares. The size
of the symbols is proportional to the logarithms of the degrees of nodes and features. The parameters
for the S1 model are β = 3, γ = 3.5, and ⟨k⟩ = 30, and for the bipartite-S1 model, βb = 3, γn = 3.5,
γf = 2.1, and ⟨kn⟩ = 3. Only edges with an effective distance χ < 1 are depicted in the figure.

where ∆θ = π − |π − |θ − θ′|| is the angular separation between the nodes in the similarity space,
R = Nn/2π denotes the radius of the similarity space, β > 1 governs the level clustering, and

µ =
β

2π⟨k⟩ sin
π

β
(2)

controls the average degree of the network ⟨k⟩. Notice that the radius is chosen such that in the limit
Nn ≫ 1 the curvature of the similarity space vanishes and the process converges to a Poisson point
process on R of density one. With these choices, the expected degree of a node with hidden degree
κ is k̄(κ) = κ, so that by controlling the distribution of hidden degrees, we can adjust the resulting
degree distribution.

Interestingly, the S1 model exhibit an isomorphism with a purely geometric model in hyperbolic
space, referred to as the H2 model. The isomorphism is realized by mapping nodes’ hidden degrees
into radial positions within a disk of radius RH2 in the hyperbolic plane as

r = RH2 − 2 ln
κ

κ0
, κ ≥ κ0, (3)

where the radius in H2 is given by RH2 = 2 ln 2R
µκ2

0
. Low degree nodes with hidden degree κ0 are

mapped at the boundary of the hyperbolic disk, whereas high degree nodes get located close to the
center of the disk. After this mapping, the connection probability in Eq. (1) becomes

p(x) =
1

1 + e
β
2 (x−RH2 )

, with x = r + r′ + 2 ln
∆θ

2
(4)

where x approximates the hyperbolic distance between two nodes at radial coordinates r and r′ with
angular separation of ∆θ. Thus, in this representation, the probability of connections is just a function
of the hyperbolic distance.

3.2 The bipartite-S1/H2 model

In real-world graph-structured data, nodes’ features are correlated with the topology of the graph, i.e.,
nodes that exhibit similarities in the network topology Gn also share common features [2, 3]. The
bipartite-S1 model induces this correlation by placing both Gn and Gn,f in the same similarity space.

In this model, every node is given a pair of hidden variables, (κn, θn). Here, κn denotes the node’s
expected degree in the bipartite node-feature graph, while θn (equal to θ) represents its angular
coordinate, matching that in Gn. In a similar fashion, features are assigned two hidden variables,
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(κf , θf ), accounting for their expected degrees and their angular locations in a the shared similarity
space. The likelihood of a link forming between a node and a feature, characterized by hidden degrees
κn and κf and separated by an angular distance ∆θ, is expressed as

pb(κn, κf ,∆θ) =
1

1 + χβb
, where χ ≡ R∆θ

µbκnκf
. (5)

In this equation,

µb =
βb

2π⟨kn⟩
sin

π

βb
(6)

is a crucial parameter that defines the average degree of nodes ⟨kn⟩ and features ⟨kf ⟩ = Nn

Nf
⟨kn⟩ and

βb controls bipartite-clustering, as a measure of the coupling between the resulting topology and the
underlying metric space. This model, akin to the S1 model, guarantees that the expected degrees of
nodes and features with hidden degrees κn and κf are k̄n(κn) = κn and k̄f (κf ) = κf , respectively.
The hidden variables for both nodes and features can be generated from arbitrary distributions or
tailored to mimic the topology of a specific real-world network.

As in the case of the S1 model, nodes and features in Gn,f can be mapped into the hyperbolic disc of
radius Rb

H2 = 2 ln 2R
µbκn,0κf,0

through the following transformations

rn = Rb
H2 − 2 ln

κn

κn,0
and rf = Rb

H2 − 2 ln
κf

κf,0
, (7)

where κn ≥ κn,0 and κf ≥ κf,0. This mapping leads to a connection probability between nodes and
features with the same functional form as in Eq. (4), replacing β by βb and RH2 by Rb

H2 .

3.3 Assigning labels to nodes

To complete our theoretical framework, we need to specify how labels are assigned to nodes, ensuring
a correlation between node labels in Gn and their features. We use the underlying similarity space
to induce and tune these correlations. We introduce a node labeling strategy for any number of
clusters NL, each associated with a label, and a tunable homophily level [40, 28, 21], crucial for
GNNs [22, 35]. First, the cluster centroids are randomly placed in the similarity space. The probability
of node i being assigned to cluster X is given by:

PX(i) =
∆θ−α

iX∑
Y ∈NL

∆θ−α
iY

. (8)

where ∆θiX is the angular distance between node i and centroid X . The α parameter tunes homophily:
a high α assigns labels based on proximity to centroids, while α = 0 assigns labels randomly.
Negative α values also induce homophily, but nodes are labeled by the farthest centroid.

Fig. 1 (a) illustrates the generation of graph-structured data with Nn nodes, represented as blue
circles, and Nf features, depicted as purple rounded squares. The top part represents the unipartite
network Gn, connecting nodes generated with the S1 model. The positions of the cluster centroids are
shown as θX and θY . The sketch is generated with a high value of α so that nodes are assigned labels
of the nearest cluster centroids. Below Gn, we depict the bipartite-S1 model where nodes and features
share the same similarity space. With these two models, we can generate the synthetic graphs with
the class labels and the binarized feature vectors shown at the bottom.

In Fig. 1(b) we depict the hyperbolic representation of one synthetic dataset generated with our
model with realistic parameters. Typically, this corresponds to highly clustered, small-world, and
heterogeneous degrees in the case of Gn. As for Gn,f , typical topologies have quite homogeneous
nodes’ degree distribution and very heterogeneous features degree distribution [3]. Each column
in Fig. 1(b) shows the two networks Gn and Gn,f with different values of the parameter α. In the
bipartite network, nodes with homogeneous degrees are closer to the edge of the disk, while features
exhibiting heterogeneous degrees are closer to the center of the circle, connected to nodes within the
same angular sector for higher value of |α|.
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4 HypNF benchmarking framework

The HypNF benchmarking framework depicted in Fig. 1 combines the S1/H2 and bipartite-S1/H2

models within a unified similarity space. Additionally, it incorporates a method for label assignment.
This integration facilitates the creation of networks exhibiting a wide range of structural properties
and varying degrees of correlation between nodes and their features. Specifically, our framework
allows us to control the following properties:

• Degree distributions. The framework allows us to generate networks with arbitrary node and
feature degree distributions by fixing the sets of hidden degrees in Gn and Gn,f . A useful choice is
the power-law distribution

ρ(κ) = (γ − 1)κγ−1
0 κ−γ with κ0 =

γ − 2

γ − 1
⟨k⟩

and parameter γ controlling the heterogeneity of the degree distribution. This leaves us with three
parameters γ, γn, γf fixing the hidden degree distributions in the S1 and bipartite-S1 models,
respectively.

• Network average connectivity. Another critical factor is the network average connectivity. We
have the freedom to choose the average degree of the network Gn, ⟨k⟩, as well as the average degree
of nodes in the bipartite node-feature network Gn,f , ⟨kn⟩, by changing µ and µb parameters in
Eqs. (2) and (6). Notice that the average degree of features is fixed by the identity ⟨kf ⟩ = Nn

Nf
⟨kn⟩.

• Clustering and topology-features correlations. The level of clustering is regulated by parameters
β and βb, binding the topology of both Gn and Gn,f to the common similarity space through the
triangle inequality. A higher value of β implies that pairs of nodes that are close in the hyperbolic
space (with small χ) are more likely to get connected in Gn. Likewise, a high value βb indicates
that nodes and features separated by a short hyperbolic distance have a high probability to be
connected in Gn,f . Consequently, when β > 1 and βb > 1 similar nodes tend to be connected and,
at the same time, share common features. Thus, β and βb not only influence the clustering in the
networks but also adjust the correlation between topology and node features. We should stress that
the ability to directly control the level of clustering, and thereby topology-feature correlations, is
one of the key distinctive features of HypNF as compared to other benchmarking schemes.

• Homophily. For the task of NC, Nl identifies the number of classes and α governs the strength of
the nodes’ labels concentration around their centroids, allowing us to control the level of homophily
in the network, defined as [28]

H =
1

Nn

Nn∑
i=1

nl(i)

ki
, (9)

where nl(i) is the number of neighbors of node i with the same label as i and ki its degree. A
high value of H indicates a tendency for similar nodes to connect with each other. Fig. 8(a) in
Appendix E depicts the relation between H and the parameter α, where a monotonic dependence on
|α| can be observed. However, this relation is not symmetric for Nl > 2. The lower H for negative
α stems from the angular organization of the labeled nodes. Indeed, Fig. 8(b) in Appendix E shows
that for the high positive α, the distance between two maximally distant nodes is lower compared
to the same negative α value. Notice that α = 0 corresponds to a maximally random assignment of
labels, which results in the expected homophily parameter taking the value ⟨H⟩ = 1/Nl.

Leveraging the HypNF model with varying parameters, our benchmarking framework generates
diverse graph-structured data. This allows for the evaluation of graph machine learning models on
networks with different connectivity patterns and correlations between topology and node features.
For tasks like NC and LP, the framework facilitates fair model comparisons, helping to assess a
novel GNN against state-of-the-art architectures and providing insights into the data’s impact on
performance.
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Figure 2: The impact of topology-feature correlation controlled by β and βb on the performance of
graph machine learning models in two tasks: (a) node classification and (b) link prediction. We set
NL = 6 and α = 10 for the NC task. The box ranges from the first quartile to the third quartile.
A horizontal line goes through the box at the median. The whiskers go from each quartile to the
minimum or maximum. The results are averaged over all other parameters.

5 Experiments

5.1 Parameter Space

We use the HypNF benchmarking framework introduced in Section 4 and customize its parameters to
generate a collection of datasets with Nn = 5000 nodes and Nf = 2000 features, displaying a wide
spectrum of properties. The degree distributions for nodes in Gn and for nodes and features in Gn,f

are tailored to exhibit either heterogeneity or homogeneity. This is achieved by setting γ, γn, γf to
the values {2.1, 3.5}. The average degrees vary between low and high values by adjusting ⟨k⟩, and
⟨kn⟩ to {3, 30}. The clustering coefficient in both networks, along with the degree of correlation
between them, is set to range between low and high values by fixing β and βb to {1.1, 3}. For the task
of NC, the number of labels are Nl = {2, 3, 6, 10}. Homophily of node labels is varied by setting
α = {−1, 1, 5, 10}.

For each unique combination of parameter values, we generate 10 network realizations with node
features, resulting in a comprehensive benchmark for model evaluation. Consequently, for the LP
task, machine learning models are tested on a benchmark comprising 27 × 10 = 1280 instances. In
the case of NC, where we introduce two additional parameters, α and Nl, the size of the benchmark
is 27 × 42 × 10 = 20480. In addition, we evaluate the performance of GNNs using AUC for the LP
task [25], and accuracy defined as the fraction of correctly classified nodes for NC task [5].

5.2 Machine learning models

In this work, we focus on two primary methodologies: feature-based methods, which entail node
embedding based on their features, and GNNs, which integrate both features and network topology.

• MLP: A vanilla neural network transforms node feature vectors through linear layers and non-linear
activations to learn embeddings in Euclidean space.

• HNN [12]: A variant of MLP that operates in hyperbolic space to capture complex patterns and
hierarchical structures.

• GCN [18]: A pioneering model that averages the states of neighboring nodes at each iteration.
• GAT [33]: A model that uses attention mechanisms to assign different importances to different

nodes in a neighborhood.
• HGCN [9]: A model that integrates hyperbolic geometry with graph convolutional networks to

capture complex structures in graph data more effectively.

Table 2 in Appendix C lists the hyperparameters for training. In the LP task, links are split into
training (85%), validation (5%), and test (10%) sets. For the NC task, nodes are distributed as 70%
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Figure 3: Impact of each individual parameter on the performance of NC and LP. In the case of NC,
we set NL = 6 and α = 10.

training, 15% validation, and 15% test [9]. Both tasks follow the methodology in [9], with results
averaged over five test-train splits. Models were trained on an NVIDIA GeForce RTX 3080 GPU
using Python 3.9, CUDA 11.7, and PyTorch 1.13.

6 Results

We begin by analyzing how topology-feature correlation affects the performance of machine learning
models by varying parameters β and βb, which control the coupling between Gn, Gn,f , and the
shared metric similarity space. For both NC and LP tasks, Fig. 2 shows that higher topology-feature
correlation (β = βb = 3) improves performance for both feature-based and GNN models compared
to lower correlation (β = βb = 1.1). In the NC task, feature-based models do not respond to changes
in β and perform better with higher βb. Conversely, GNN models, utilizing information from both
Gn and Gn,f , benefit from high β and βb values, not only in terms of average performance but also in
terms of the spread around this average.

We measured the performance of machine learning models by varying the clustering level in Gn

(adjusted by β) and the average number of features per node in the bipartite network, ⟨kn⟩. For the
NC task, Fig. 9(a) in Appendix F shows significant performance differences between feature-based
and GNN models. In bipartite networks with low ⟨kn⟩, GNN models outperform feature-based ones.
As ⟨kn⟩ increases (bottom row), all models’ accuracy improves, converging to almost similar levels.
Here, the simplest model, MLP, performs nearly as well as the most sophisticated, HGCN. Note that
these results fix β and ⟨kn⟩, averaging over other parameters. Fig. 9(b) in Appendix F compares these
models in terms of AUC for the LP task. The models show a significant shift in relative performance
with varying ⟨kn⟩. For high ⟨kn⟩, models in hyperbolic space (HNN and HGCN) perform better.
Notably, the feature-based model, HNN, matches or exceeds the performance of HGCN, especially at
low β.

In Fig. 3, we present a summary of model performance on both downstream tasks, varying parameters
individually between high and low values while averaging over others. Across most cases, HGCN
outperforms or matches others in the LP task, and achieves competitive accuracy in the NC task, akin
to other graph-based methods. In addition, for the NC task, the feature-based methods (MLP and
HNN) are barely sensible to S1 model parameters, i.e., ⟨k⟩, β and γ. However, for the LP task, the
topology-features correlation strongly impacts their AUC values, leading to MLP and HNN being
sensitive to the parameters of the bipartite network, including βb, γn, and γf , with a specific emphasis
on ⟨kn⟩. In contrast, GNNs are particularly responsive to variations in ⟨kn⟩. It is worth mentioning
that these observations highlight the sensitivity of graph machine learning methods to individual
parameters. However, in real-world scenarios, the collective interplay of all parameters influences the
overall performance of the models, see the detailed analysis in Appendix F.

Another important factor that is usually overlooked concerns the fluctuations of the performance of
machine learning models, which provides insights into their robustness and reliability. We address
this problem by analyzing the difference in the standard deviation of the accuracy and AUC for a
given set of parameters. In Fig. 7 of Appendix D, we show how the fluctuation changes when each
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Figure 4: Aggregated results for (a) link prediction and (b) node classification tasks. The annotations
denote the statistical significance levels derived from the Mann-Whitney U test, a non-parametric
test suitable for comparing two independent samples, especially when the data distribution is not
assumed to be normal. This test evaluates if there is a statistically significant difference in the
median performance scores between two different models. The label ns signifies p-value ≤ 1, ****
corresponds to p-value ≤ 10−4.

parameter is set to high or low. Let us take HGCN as an example. For the high average degree ⟨k⟩,
the accuracy and AUC display lower standard deviations as compared to low average degree, which
means that HGCN is more robust to other parameters when the average degree is high. Moreover, a
homogeneous degree distributions (γ = 3.5) results in a broader spread of AUC but not of accuracy.
GCN and GAT display similar fluctuation behaviors, whereas for the feature-based models (MLP,
HNN), the bipartite-S1 parameters dictate their sensibility to other parameters.

The global average picture of the performance of the analyzed models is shown in Fig. 4, where
we averaged results over all the parameters in the HypNF benchmarking framework. This analysis
sheds light on model selection when no structural information is available about the data. We
observe the superiority of the hyperbolic-based models in capturing essential network properties and
connectivities for the LP task (Fig. 4(a)). Yet, HGCN outperforms HNN with statistical significance.
As for the NC task, results are more ambiguous, with GNNs outperforming feature-based models
overall. However, the distinctions in performance within the GNNs are not substantial. Hence, when
dealing with unseen data, the simplicity of the GCN model makes it a more efficient choice.

Finally, in Appendix F, we carry out a comprehensive analysis of the performance of the selected
models, focusing on all parameters within the S1/H2 (Figs. 10(a) and 11(a)), bipartite-S1/H2

(Figs. 10(b) and 11(b)), and the combination of the two (Figs. 12 and 13). Moreover, Fig. 14 reveals
the dependence of the number of labels and the homophily level in terms of accuracy.

7 Conclusion

In this study, we introduced HypNF benchmarking framework for graph machine learning, and in
particular for graph neural networks. This framework, leveraging the S1/H2 and bipartite-S1/H2

models, enables the generation of synthetic networks with controllable properties such as degree
distributions, average degrees, clustering coefficients, and homophily levels. Our findings underscore
the significance of topology-feature correlations in influencing GNN performance. Specifically,
models embedded in the hyperbolic space, with its intrinsic hierarchical structure, outperformed
the rest of the models in the LP task. This research contributes to the broader understanding of
graph machine learning, providing insights into the suitability of various models under different
network conditions. Furthermore, our benchmarking framework serves as a valuable tool for the
community, enabling fair and standardized comparisons of new GNN architectures against established
models. A promising direction for future work is to extend the bipartite-S1/H2 model to incorporate
weighted features. This will enable HypNF to generate networks with non-binary features, allowing
for more nuanced and flexible representations [4]. Additionally, the framework can be extended to
accommodate community structures by using a non-homogeneous distribution of nodes within the
S1/H2 similarity space, as done in [41] and [13].
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A Empirical validation of HypNF
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Figure 5: Topological properties of Cora dataset and its synthetic counterpart generated by HypNF.
(a)-(c) Complementary cumulative degree distribution of nodes in Gn and those of nodes and features
in Gn,f . (d)-(f) clustering spectrum of nodes as a function of node degrees in Gn and bipartite
clustering sepctrum of nodes and features as a function of nodes and features degrees in Gn,f . (g)-(i)
average nearest neighbors degree function in Gn and Gn,f . The clustering coefficient, c, for each
node in Gn is calculated as the fraction of connected pairs among its neighboring nodes relative to the
total possible pairs of neighbors. To compute the bipartite clustering, cb, for a given node, each pair
of its neighboring features is considered connected if they share at least one common node, apart
from the node in question. The clustering coefficient is then computed similarly to the clustering
coefficient in a unipartite network. This definition also applies to the bipartite clustering coefficient
of features. Finally, knn in both Gn and Gn,f quantifies the average degree of the neighbors for a
given node or feature. Exponential binning is used in the computation c, cb and knn. The blue shaded
region indicates the two-σ intervals around the mean, derived from 100 realizations of HypNF.
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B Degree distribution and clustering control in HypNF

100 101 102

k

10−3

10−2

10−1

100
C

C
D

F
(a) γ = 2.5(a) γ = 2.5(a) γ = 2.5(a) γ = 2.5

Unipartite(Nodes)

β = 1.1
β = 1.5
β = 2
β = 3

100 101 102

kn

10−3

10−2

10−1

100
(b) γn = 3(b) γn = 3(b) γn = 3(b) γn = 3

Bipartite(Nodes)

βb = 1.1
βb = 1.5
βb = 2
βb = 3

101 102 103

k f

10−3

10−2

10−1

100
(c) γ f = 2.1(c) γ f = 2.1(c) γ f = 2.1(c) γ f = 2.1

Bipartite(Features)

βb = 1.1
βb = 1.5
βb = 2
βb = 3

2 3
β

0.2

0.4

0.6

0.8

c

(d) HypNF

2 3
βb

0.95

1.00

c b

(e)

HypNF
CM

2 3
βb

0.7

0.8

0.9

1.0

c b

(f)

HypNF
CM

Figure 6: Independent control of degree distribution and clustering coefficient in synthetic networks
generated by HypNF. (a)-(c) Complementary cumulative degree distribution of nodes in Gn (N =
2000, γ = 2.5, and ⟨k⟩ = 10) and those of nodes and features in Gn,f (Nn = 2000, Nf = 200,
⟨kn⟩ = 10, γn = 3, and γf = 2.1) for different values of β and βb. The dashed black lines are guides
for the eyes corresponding to the power-law exponents. (d)-(e) Clustering and bipartite clustering
coefficients as a function of β and βb. The gray curves in (e) and (f) illustrate the bipartite clustering in
the randomized versions of the bipartite synthetic networks, generated according to the configuration
model (CM).
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C Hyperparameters of the machine learning models

Table 2: Hyperparameters of the machine learning models.
Model Dropout Weight Decay Optimizer Activation Layers Dimensions

MLP 0.2 0.001 Adam - 2 16
HNN 0.2 0.001 Adam - 2 16
GCN 0.2 0.0005 Adam ReLU 2 16
GAT 0.2 0.0005 Adam ReLU 2 16

HGCN 0.2 0.0005 Adam ReLU 2 16

D Fluctuations in the performance of machine learning models
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Figure 7: Fluctuations of performance of the machine learning models. The difference of the standard
deviation between high and low value of each parameter. We set NL = 6 and α = 10 for the NC
task. The results are averaged over all other parameters.
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E Homophily in the synthetic networks

a

b

Figure 8: (a) Value of homophily in the synthetic networks. Parameters of the networks: N =
1000, ⟨k⟩ = 30. The black horizontal line indicates the random case, i.e., for α = 0 which based
on Eq. 8 gives us H = 1/NL where NL is the number of labels. The results are averaged over 100
realizations. (b) Maximum angular distance between nodes in the same community in function of
parameter α. The results are averaged over 100 realizations.

F Exploring the parameters’ space

Here, we explore the impact of parameters within the HypNF benchmarking framework including
the parameters in S1/H2 and bipartite-S1/H2 models, as well as the combinations of both on the
performance of graph machine learning techniques.

a b

Figure 9: The impact of the level of clustering β and average degree of nodes in the bipartite network
⟨kn⟩ on the performance of machine learning models in two tasks: (a) node classification and (b) link
prediction. We set NL = 6 and α = 10 for the NC task. The box ranges from the first quartile to
the third quartile. A horizontal line goes through the box at the median. The whiskers go from each
quartile to the minimum or maximum. The results are averaged over all other parameters.
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Figure 10: Performance comparison of machine learning models on NC task with respect to (a)
S1/H2 model parameters and (b) bipartite-S1/H2 model parameters. We set NL = 6 and α = 10.
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Figure 11: Performance comparison of machine learning models on LP task with respect to (a) S1/H2

model parameters and (b) bipartite-S1/H2 model parameters.
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Figure 12: Performance comparison of machine learning models on NC task with respect to a
combination of parameters in the S1/H2 and bipartite-S1/H2 models. We set NL = 6 and α = 10.
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Figure 13: Performance comparison of machine learning models on LP task with respect to a
combination of parameters in the S1/H2 and bipartite-S1/H2 models.
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Figure 14: Performance comparison of machine learning models on the NC task with respect to a
combination of Nl and α parameters averaged over all other parameters.
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