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Causal set theory is perhaps the most minimalistic approach to quantum gravity, in the sense
that it makes next to zero assumptions about the structure of spacetime below the Planck scale.
Yet even with this minimalism, the continuum limit is still a major challenge in causal sets. One
aspect of this challenge is the measurement of distances in causal sets. While the definition and
estimation of time-like distances is relatively straightforward, dealing with space-like distances is
much more problematic. Here we introduce an approach to measure distances between space-like
separated events based on their causal overlap. We show that the distance estimation errors in this
approach vanish in the continuum limit even for smallest distances of the order of the Planck length.
These results are expected to inform the causal set geometrogenesis in general, and in particular
the development of evolving causal set models in which space emerges from causal dynamics.

I. INTRODUCTION

Planck units, introduced by Planck-self [1], mark a
pivotal cornerstone in the quest for natural units that
rely solely on the fundamental constants rather than
on experimental artifacts. At its inception, the signifi-
cance of the Planck scale was not fully realized even by
Planck. This scale, however, has emerged as a critical
threshold, embodying the limitations of modern physics
in attempting to reconcile quantum mechanics and gen-
eral relativity. This problematic reconciliation revealed a
fundamental incompatibility between quantum mechan-
ics and general relativity at the Planck scale, under-
scored by the Heisenberg uncertainty principle [2] and
the Schwarzschild black hole radius [3]. This incompat-
ibility asks for the formulation of a theory of quantum
gravity, a pursuit that remains a fundamental challenge
in physics for more than a century.

Causal sets theory (CST) stands as a promising av-
enue in this pursuit, proposing a conceptual framework
in which spacetime at the Planck scale is discrete, con-
sisting of fundamental spacetime atoms interconnected
by causal relations [4–17]. This approach is motivated
by the work of Hawking, King, McCarthy [18] and Mala-
ment [19], which shows that spacetimes sharing identical
causal structures are essentially equivalent up to a con-
formal factor.

The discretization of spacetime suggested by CST im-
plies that our everyday experience of spacetime as a
smooth continuous manifold is an illusion induced by
coarse-graining at scales that are many orders of mag-
nitude larger than the Planck scale. This transition to
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larger scales is known as the continuum limit of causal
sets. Taking this continuum limit demands the ability to
measure distances solely from the causal structure. This
task is relatively straightforward for time-like separated
events [5], but it is a significantly more intricate endeavor
for space-like separated events [20–22].

Here, we introduce a methodology for measuring space-
like distances in Minkowski spacetimes and causal sets
built on them. We measure distances between space-like
separated events based on causal overlaps between them,
and show that such measurements remain extremely pre-
cise all the way down to the Planck scale. Furthermore,
this approach provides an easy-to-work-with framework
for defining reference frames and evaluating some kine-
matic quantities along time-like paths.

We proceed by recalling some basic background ma-
terial concerning the evaluation of proper times between
time-like separated events and other relevant matters in
Section II. In Section III, we introduce our approach to
measure proper distances between space-like separated
events, and discuss the associated distance estimation
errors, which all go to zero in the continuum limit. In
Section IV, we perform massive numerical experiments to
test our method both on long-range distances as well as
on short-range ones, which are of the order of the Planck
length. In Section V, we show how our results enable the
definition of inertial reference frames, and how to mea-
sure some kinematic properties of time-like curves. We
conclude with relevant remarks, including those concern-
ing the possibility of extending our approach to curved
spacetimes, in Section VI.
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II. CONNECTING DISCRETE AND
CONTINUOUS WORLDS: CAUSAL SETS
VERSUS LORENTZIAN MANIFOLDS

A causal set (C,≺) is a locally finite set with a tran-
sitive order relation defined among some of its elements,
see [17] and references therein. By locally finite, we mean
that given two elements x ≺ y ∈ C, the number of ele-
ments in the set {z ∈ C|x ≺ z ≺ y} is finite. With this
order relation, the causet C can be fully encoded as a
directed acyclic graph GC defined as follows:

1. Each element x ∈ C is a node in the graph GC .

2. There is a directed link in GC pointing from x to y
if and only if x ≺ y and ∄z ∈ C|x ≺ z ≺ y.

In other words, a link from x to y means that there is
no alternative directed path in C from x to y. Notice
that any causal relation between two elements a and b
in C (not necessarily connected in GC) can be inferred
from the existence or absence of a path (or chain) in GC
connecting both elements. Thus, hereafter, we use the
causet C or its graph representation GC interchangeably.

As defined above, causal sets are general mathematical
structures unrelated to any physical system. However,
they are particularly suitable for describing the causal
structure of spacetime. Within this context, we say that
for a pair of elements x, y ∈ C, x ≺ y if and only if y is
in the future of x, or x is in the past of y.

One connection between discrete causal sets and con-
tinuous spacetimes goes as follows. The causal structure
of a Lorentzian manifold M defines a transitive partial
order between spacetime points in the manifold. There-
fore, a Poisson point process of intensity ρ on M defines
a Lorentz-invariant causal set C. When the intensity ρ
diverges, one should be able to recover the original con-
tinuum manifold M from this causal set C alone. Un-
derstanding in what precise sense the continuum limits
of such discrete causal sets are smooth Lorentzian mani-
folds is one of the major challenges within the causal set
program [23–29].

A. Proper times in Minkowski spacetimes

Important steps in this direction have been taken to re-
cover the proper time between time-like separated events.

In general relativity, the proper time of an observer
is defined as the time in the co-moving reference frame,
where the space coordinates of the observer are fixed.
In the case of a causal set, the minimum possible step
for any observer is a link in GC . Thus, we can assume
that such links define the fundamental unit of proper

time, ultimately related to the Planck time tP ≡
√

Gℏ
c5 .

The proper time elapsed along any chain of links in GC is
then proportional to the number of steps along the chain.
Using these ideas, in [20], the time interval between two
time-like separated events a ≺ b is defined as the number

of links in the longest chain connecting a and b, denoted
as nC(a, b), which defines the geodesic in C between the
two events.
For causal sets sprinkled via Poisson point processes

onto Minkowski Md+1 or conformally flat spacetimes of
any dimension d + 1, it has been shown that the proper
time τC(a, b) between any two events a ≺ b measured in
the causal set, converges in probability to the time-like
distance τMd+1(a, b) between the events in the spacetime,

τC(a, b) ≡ αdρ
−1/(d+1)nC(a, b) −→ τMd+1(a, b), (1)

as ρ → ∞ [20, 30, 31]. Here, αd is a constant that de-
pends only on the dimension of the spacetime. It is ex-
actly known only for d = 1, α1 = 1/

√
2, whereas for

higher dimensions numerical simulations give α1 ≲ α2 ≲
α3 [32].
Setting nC(a, b) = 1 in Eq. (1) defines the characteris-

tic unit of proper time as a function of the density of the

Poisson point process as τ0 ∼ ρ−
1

d+1 . Equation (1) pro-
vides a way to define an estimator of the proper time in
the manifold using only the information from the causal
set. More importantly, it can be shown that for large
density

τC(a, b) = τMd+1(a, b) + ρ
βd−1

d+1 ζd (2)

with βd < 1 and ζd a random variable with bounded
fluctuations [31]. The exact values of the exponents βd

are only known for d = 1, β1 = 1/3, whereas for higher
dimensions take the approximate values β2 ≈ 1/4, β3 ≈
1/6 and βd ≈ 0 for d ≥ 4. Yet, even though the exact
value of βd is unknown, by knowing that it is smaller
than one, we observe that by just counting links in GC in
the continuum limit ρ → ∞, we recover the actual proper
times, up to the conformal factor αdρ

−1/(d+1).

B. Organization of links in Minkowski causal sets

Before proceeding to deriving similar results for space-
like distances, we need to recall how the infinite num-
ber of links emanating from a given event in GC are dis-
tributed in Md+1 [17].
Without loss of generality, let us focus on an event

located at the origin of coordinates xi = t = 0. Its first
neighbors are obviously within its future light cone and
must be space-like separated, as otherwise they could not
be first neighbors. In d + 1 dimensions, the future light
cone of a given point can be parametrized such that the
metric tensor within the light cone can be written as

ds2 = −dτ2 + τ2(dχ2 + sinh2 χdΩ2
d−1) (3)

where dΩ2
d−1 is the metric tensor of a (d−1)−dimensional

sphere of unit radius, τ is the proper time, and the term
within the parenthesis is the metric of the d-dimensional
hyperbolic space of constant curvature K = −1. A Pois-
son point process with density ρ means that the local
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FIG. 1. Direct neighbors of the event at the origin of coor-
dinates (blue squares) in a causal set generated from patch
of M2 at density ρ = 5000. The red dashed lines are the hy-
perboloids of constant proper times with τ± from Eq. (10).
Gray symbols are events in the future of the root event but
not directly connected to it.

density of sampled events is proportional to the volume
element. Thus, the expected number of events in C in an
infinitesimal neighborhood of coordinates (τ, χ,Ωd−1) is
then

ρdV = ρ[τddτ ][sinhd−1 χdχdΩd−1]. (4)

However, not all events in the future light cone are direct
neighbors of the root event. To calculate the density of
first neighbors, we must first evaluate the probability that
an event at proper time τ from the root event is actually
connected to it. Given that Poisson point processes are
Lorentz invariant, this probability is only a function of
τ and can be computed as the probability that there is
not any event within the Alexandrov interval between the
root event and the event on the hyperboloid of constant
proper time τ . This probability reads

Prob(τ) = e−ρVd(τ), (5)

where Vd(τ) is the volume of the Alexandrov set given
by

Vd(τ) = vdτ
d+1 ; vd ≡ 1

(d+ 1)Γ
(
1 + d

2

) (π
4

) d
2

. (6)

The expected number of irreducible links of the root
event in an infinitesimal neighborhood of coordinates
(τ, χ,Ωd−1) is then[

ρτde−ρVd(τ)dτ
] [

sinhd−1 χdχdΩd−1

]
. (7)

This result tells us that while first neighbors are homoge-
neously distributed on the hyperbolic space at constant
density [(d + 1)vd]

−1, their proper time coordinates are

not homogeneously distributed. Instead, they follow the
normalized measure

p(τ̂) = (d+ 1)τ̂de−τ̂d+1

, (8)

where we have defined the dimensionless proper time

τ̂ ≡ (ρvd)
1

d+1 τ (9)

This equation confirms that the characteristic proper
time of an individual link in GC scales with the density
as ρ−1/(d+1). Besides, if we interpret Eq. (8) as a proba-
bility density, we can state that, with a confidence level
of 99%, direct neighbors of the root event are homoge-
neously distributed within the hyperbolic shell enclosed
by the two hyperboloids of proper times

τ− =

[
− ln (1− p)

ρvd

] 1
d+1

and τ+ =

[
− ln p

ρvd

] 1
d+1

(10)

with p = 0.005. Figure 1 shows a case example of a
random sprinkling in a square patch of M2 at density
ρ = 5000. Highlighted in red squares the figure shows
the events directly connected to the root event which,
as predicted, are within the two hyperboloids of proper
times τ± (highlighted in orange). It is also worth men-
tioning that despite the fact that neighbors are homo-
geneously distributed in this hyperbolic shell, they are
strongly correlated by the condition of being space-like
separated. Besides, within this shell, neighbors are dis-
tributed at a constant density that does not depend on
the sprinkling density ρ.
The particular form of Eqs. (8) and (9) implies that

both the average and standard deviation of proper times
of direct neighbors of the root event scales as ρ−1/(d+1)

so that fluctuations of the proper time of single links
do not vanish in the limit tP → 0 (or ρ → ∞). This,
however, does not imply that the continuum limit cannot
be achieved. To see this, imagine that we take a chain of
n links from GC without any particular selection rule of
links. The total proper time along the chain is

τ(n) =

n∑
i=1

τi (11)

where τi is the proper time of a single link of the chain. If
there is no bias in selecting links, we can assume that τis
are identical and independent random variables. There-
fore, the average and standard deviation of τ(n) are given
by

⟨τ(n)⟩ = n⟨τ⟩ ; στ(n) =
√
nστ , (12)

so that the coefficient of variation is

CVτ(n) =
στ√
n⟨τ⟩

(13)

If further assume that ⟨τ(n)⟩ is a macroscopic (but con-
stant) proper time in the Minkowski spacetime, then we
can write that

CVτ(n) =
στ√

⟨τ⟩⟨τ(n)⟩
∼ ρ−

1
2(d+1) → 0. (14)
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FIG. 2. Definition of causal overlaps. Sketch of the re-
gions used for the computation of the causal overlap between
events a and b with respect to event c. Region A (B) is the
part of the Alexandrov interval between events a (b) and c
that does not contain the past of event b (a). Region C is
defined as the intersection of the common past of events a
and b with the future of event c. The causal overlap is the
ratio between the volume of region C and the smallest of the
volumes of regions A ∪ C and B ∪ C.

So that in the continuum limit (ρ → ∞) the graph defi-
nition of proper time along any time-like curve is exactly
the same as in the manifold.

III. MEASURING PROPER LENGTHS
BETWEEN SPACE-LIKE SEPARATED EVENTS

USING CAUSAL OVERLAPS

The evaluation of proper lengths among space-like sep-
arated events from the causal structure is far more com-
plex than in the case of time-like separated events. This
is due to the fact that since space-like events are causally
unrelated, distances between them can only be defined
based on the intersection of light cones. While this is not
a problem in the continuum, not all possible prescriptions
to evaluate geometric distances can be easily translated
to discrete causets [20, 21].

One of the most recent and promising approaches [22]
evaluates the distance between two events a and b in a
Cauchy hypersurface Σ as

dΣ(a, b) ∝ inf
r∈H(a,b)

[V (r)]
1

d+1 , (15)

where H(a, b) is the set of future events that are simulta-
neously null to both a and b and V (r) the volume of the
past light cone of one such point bounded from below by
Σ. Notice that Eq. (15) is the distance calculated with
the metric induced by Md+1 on Σ. While this has per-
fect sense in the continuum, its implementation to causal
sets has some caveats. The first one concerns the fact

that dΣ(a, b) depends on the choice of the Cauchy hyper-
surface, which in the causal set corresponds to an unex-
tendible antichain. However, discrete Cauchy surfaces in
the causal set form an uncountable infinite set and, thus,
it is not clear what would be the correct choice without
the help of a pre-existing embedding into a continuous
manifold. The second problem is due to the absence in
causal sets of events in the null surface H(a, b), which
induces a strong error at distances of the order of the
Planck scale.
Here we introduce a distance estimator for causal sets

that is able to overcome these problems. We begin not
with causal sets, but with a measure of the distance be-
tween two spacelike-separated events in any spacetime
based on their causal overlap. Specifically, we define the
causal overlap O(a, b) between two events a and b with
respect to an arbitrary event c ∈ Past(a, b) in their com-
mon past as

O(a, b) ≡ V [C]

min (V [A] , V [B]) + V [C]
, (16)

where V [·] is the volume of regions A,B,C defined as
in Fig. 2. That is, with I(x, y) = Past(x) ∩ Future(y)
denoting the Alexandrov interval between x and y,

A = I(a, c) \ I(b, c), (17)

B = I(b, c) \ I(a, c), (18)

C = I(a, c) ∩ I(b, c). (19)

With this definition, the causal overlap is always in the
range O(a, b) ∈ [0, 1]. If events a and b are time-like or
null separated, then O(a, b) = 1, whereas for space-like
separated events O(a, b) < 1 unless both events are the
same event.
The definition in Eq. (16) is valid for any Lorentzian

manifold. Henceforth, we restrict our attentions only
to the case when the spacetime is the Minkowski space-
time Md+1 of any dimension d, and discuss other space-
times in Section VI. Given the freedom in the choice
of event c, it is always possible to chose c such that
V [A ∪ C] = V [B ∪ C]. In Md+1, this is equivalent to
saying that events a and b are at the same proper time
τc from c so that V [A ∪ C] = V [B ∪ C] = vdτ

d+1
c . If,

without loss of generality, we set event c and the origin of
coordinates, then events a and b are located on the hyper-
boloid of constant proper time τc from event c. There-
fore, without loss of generality, we henceforth choose a
reference frame in which events a and b are simultane-
ous. With these setting, events a and b are separated by
the hyperbolic distance dHd(a, b), which is related to the
distance in Md+1 as

dMd+1(a, b) = 2τc sinh

(
dHd(a, b)

2τc

)
. (20)

The crucial point to notice here is that the causal overlap,

as defined in Eq. (16), is just a function of
dHd (a,b)

2τc
:

OMd+1(a, b) = fd

(
dHd(a, b)

2τc

)
, (21)
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where fd(·) is a function that depends on the spatial di-
mension of Md+1. The distance can thus be evaluated
as

dMd+1(a, b) = 2τc sinh
(
f−1
d (OMd+1(a, b))

)
. (22)

In dimension d = 1, function f1(·) takes a simple expo-
nential form so that the causal overlap can be written
as

OM2(a, b) = exp

(
−dH1(a, b)

τc

)
(23)

so that the distance between a and b takes the form

dM2(a, b) = τc
1−OM2(a, b)√

OM2(a, b)
. (24)

In arbitrary dimensions, the causal overlap takes a cum-
bersome expression (see Appendix A for an integral rep-
resentation). However, it is easy to see that in the limit
τc ≫ dHd(a, b) it behaves as

OMd+1(a, b) ≈ 1− cd
dHd(a, b)

2τc
(25)

where

cd =
d+ 1√

π

Γ
(
d
2

)
Γ
(
d+1
2

) . (26)

In principle, by knowing the exact expression of function
fd(·), we can use any arbitrary point c (at proper time
τc to a and b) to evaluate the proper distance between
a and b through Eq. (22). However, precisely because
point c (and so τc) is arbitrary, by choosing one for which
τc ≫ dHd(a, b), we can use the asymptotic expression for
the causal overlap Eq. (25) and write that

dMd+1(a, b) =
2

cd
lim

τc→∞
τc(1−OMd+1(a, b)). (27)

The estimation of distances based on causal overlaps in
Eqs. (16,22,27) has a number of desirable properties. The
obvious one is that, thanks to the number-volume corre-
spondence, the definition of causal overlaps in spacetimes
translates straightforwardly to causal sets: the volumes
of regions A,B,C in Eq. (16) become the numbers of ele-
ments in the corresponding sets in a causal set. This im-
plies that distance estimations are intrinsic to the causal
set graph, without any reference to an embedding contin-
uous manifold. Another interesting property of Eq. (27)
is that the dependence on spacetime dimension appears
only as a multiplicative constant. Therefore, even with-
out knowing the actual value of d, we can estimate dis-
tances up to a conformal factor. Finally, we note that
there is an infinite number of possible events c giving
rise to the estimation of proper distances. Thus, the
proper distance between two events can be understood
as a measure of the entanglement of both events with
their common past.

We now focus on causal sets arising from Poisson point
processes on Md+1, in which case the effectiveness of
Eqs. (22) and (27) to recover the continuum in the limit
ρ → ∞ depends on the statistical properties of the causal
overlap in Eq. (16), which we can rewrite in this case as

OC(a, b) ≡
N [C]

N [A] +N [C]
, (28)

whereN [C] is the number of events in region C, andN [A]
the number of events in region A or B defined in Eqs. (17-
19). We note that N [A] and N [C] are random variables
defined in disjoint regions, and so they are statistically
independent. Using this fact, it is easy to prove that the
average value of OC(a, b) is

⟨OC(a, b)⟩ = OMd+1(a, b). (29)

Thus, the causal overlap as measured on C is, on average,
the same as the causal overlap in Md+1.
Beyond the average, we can estimate the relative sta-

tistical error of the causal overlap as [33]

δOC(a, b)

⟨OC(a, b)⟩
=

1− ⟨OC(a, b)⟩√
ρV [C]

√
1 +

V [C]

V [A]
. (30)

This expression approaches zero when ρ ≫ 1, even at
the smallest scales. To see this, suppose that a and
b are separated by a proper length of the order of the

Planck scale, that is dMd+1(a, b) ≈ ρ−
1

d+1 ∼ tP . Using
now Eq. (25) and the definition of causal overlap, we see

that 1 − ⟨OC(a, b)⟩ ∼ V [A]
V [C] ∼

tP
τc
. Combining these scal-

ing results with Eq. (30) we conclude that the relative
error of the causal overlap between two events space-like
separated by a Planck length scales as

δOC(a, b)

⟨OC(a, b)⟩
∼

(
tP
τc

) d+2
2

, (31)

which goes to zero when tP → 0. These results show
that the continuum can be recovered by measuring causal
overlaps with number of events instead of actual volumes
provided that tP → 0.
Finally, the error in the estimation of the distance by

Eq. (27) will have a contribution from the error in the
causal overlap computed above and the one from the
estimation of τc which, according to Eq. (2), is of the

order ∼ t1−βd

P . Combining both results, we conclude
that the estimation of the distance is accurate whenever
τc ≫ t1−βd

P .

IV. NUMERICAL EXPERIMENTS

We run extensive numerical simulations to test the ac-
curacy of Eq. (22) in measuring distances between space-
like separated events, both at long and short scales.
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To do so, we sprinkle uniformly at random a finite
number of events N in a box of side lenght 1 in Md+1,
d = 1, 2, 3, so that the density of space-time events is set
to ρ = N . We set two events a and b separated by proper
distance l located at coordinates xµ

a = (1,−l/2, 0, 0) and
xµ
b = (1, l/2, 0, 0) for d = 3 and similarly for d = 1, 2. To

perform long-scale simulations we fix l to a given value
while increasing the density of events ρ. Instead, in short-
scale simulations, we set the distance to the minimum
distance allowed by the discretization of spacetime, that
is l = ρ1/(d+1), while increasing the density of events.

A. Determination of event c

Given the volume-number correspondence, and so the
equivalence between causal overlaps measured in Md+1

and C (as stated in Eq. (29)), we could use Eq. (22) to
measure any distance using only information in C. How-
ever, to use Eq. (22) we must first find an event c that is
simultaneously at (arbitrary) proper time τc from events
a and b using only the structure of the causal set. In our
simulation setup, such events have coordinate x = 0 and
are located at the intersection of the past light cones of
a and b. In principle, given the discreteness of the the
causal set, it is not possible to find such events, although
it is always possible to find events that are arbitrarily
close to x = 0. To find them, we use a double filter
method.

First filter. Equation (2) poses a resolution limit in
the estimation of proper times in the causal set. Thus,
we first pre-select events c such that

|nC(c, a)− nC(c, b)| < ρ
βd
d+1 , (32)

where nC(c, a) is the longest path in GC connecting events
a and c. In this way, we can say that, up to our resolution
limit, such c events are at the same proper distance to a
and b. We note that this filter requires the knowledge of
the density of the Poisson point process and the dimen-
sion of the embedding spacetime. This information is not
contained in the causal set. We use it only to speed up
the numerical simulations, but next we introduce a sec-
ond filter that relies only on information contained in the
causal set.

Second filter. For each selected event c in the previ-
ous step, we measure the number of events in the Alexan-
drov set between a and c, N [A∪C], and between b and c,
N [B∪C]. InMd+1, if c is exactly at the same proper time
from a and b, the difference Zc(a, b) ≡ N [A∪C]−N [B∪C]
is a random variable with the zero mean and variance

σ2
Zc

= ⟨N [A ∪ C]⟩+ ⟨N [B ∪ C]⟩ − 2⟨N [C]⟩. (33)

Therefore, out of all events c selected in the previous step,
we only keep those that satisfy

|Zc(a, b)| <
1

2

√
N [A ∪ C] +N [B ∪ C]

√
1−OC(a, b).

(34)

The prefactor 1/2 in this last inequality is arbitrary and
can be selected to gauge the error in the estimation of
event c. We emphasize an important point here that this
inequality uses only information in the causal set, with-
out any reference to the embedding Minkowski space-
time.
The question is whether Eq. (34) selects events that

are arbitrarily close to x = 0 in the limit ρ → ∞. Let us
consider an event c with an offset in the x coordinate of
δx, so that xµ = (t, δx, y, z). The coordinates t, y, and
z are such that if the event had δx = 0 the proper time
from a and b to c would be τc. Then, the expected value
of Zc(a, b) when δx ̸= 0 is

⟨Zc(a, b)⟩ = vdρτ
d+1
c

[(
1− δx2 + lδx

τ2c

) d+1
2

(35)

−
(
1− δx2 − lδx

τ2c

) d+1
2

]
.

By comparing this expression with Eq. (34), it is possi-
ble to determine the value of δx above which event c is
rejected as a suitable event. Assuming that δx/τc ≪ 1,
the event c is rejected when

lδx

τ2c
>

√
1−OC(a, b)

2(d+ 1)2vdρτ
d+1
c

, (36)

where we have used thatN [A∪C]+N [B∪C] ≈ 2vdρτ
d+1
c .

In the case of long-scale distances with l fixed, the causal
overlap is constant and the right hand side of inequal-

ity Eq. (36) scales as t
(d+1)/2
P . This implies that in the

continuum limit tP → 0, the selection criteria of events
c is more and more stringent, with selected events ap-
proaching arbitrarily close to x = 0. In the case of
short-scale distances l ∝ tP , the causal overlap scales
as 1 − OC(a, b) ∼ tP /τc, so that the inequality Eq. (36)
becomes

δx

τc
>

(
tP
τc

) d
2

. (37)

Again, we see that the right hand side of the inequality
goes to zero in the continuum limit, so that even at the
smallest length scales the selection of events c becomes
asymptotically exact.
Notice that, in fact, we could use only Eq. (34) to

select events c, which relies only on information in the
causal set, whereas Eq. (32) uses information about the
dimension of the embedding space. However, using the
first step is more computationally efficient because, in
this case, we only have to measure N [A ∪ C], N [B ∪ C],
and N [C] for a subset of events c.

B. Numerical results

Figure 3 shows simulation results for long distance es-
timations in M3. The top row in Fig. 3 shows the x
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FIG. 3. Long-scale simulations in M3. The top row shows
the x (left) and y (right) coordinates of selected events c used
to estimate the distance between events a and b for two differ-
ent densities, ρ = 104 (red circles) and ρ = 105 (green circles).
The proper distance between events a and b is 0.2. The bot-
tom left plot shows the distance estimations for all selected
events c shown in the top plots as a function of the actual
proper time τc of event c. The orange and gray circles corre-
spond to distance estimations of events separated by proper
distances 0.1 (gray) and 0.3 (orange) at density ρ = 105. The
dashed lines indicate the actual distances that are inferred.
The bottom right plot shows the same as the left plot but us-
ing the estimation τ̂c of proper times of events c in Eq. (38).

(left) and y (right) coordinates of selected events c at
two different densities, ρ = 104 and ρ = 105. As it can
be seen, selected events are more concentrated near the
plane x = 0 when the density is increased, as predicted in
the previous section. For each selected event c, we evalu-
ate the proper distance between events a and b using the
numerical solution of Eq. (22), where τc is computed as
τc = (τMd+1(c, a) + τMd+1(c, b))/2 using the actual coor-
dinates in Md+1 of events a, b, and c. In this way, the
randomness in the estimation of distances comes from
the fluctuations associated to the causal overlap alone.

Concerning event c, a priori, any such event can be
used in Eq. (22). However, those with low proper time
τc ≲ l/2 have a higher statistical error due to the space-
time discretization. Besides, due to the simulation setup,
events with values of the y coordinate far from y = 0
have part of their past light cones outside the simulated
box, inducing an extra error term. This problem can
be, however, minimized by choosing events with τc ≈ 1
as such events have necessarily y ≈ 0. The bottom left
plot in Fig. 3 shows the inferred proper distances when
l = 0.1, 0.2, 0.3 as a function of the actual proper time τc
of all selected events c compared against the actual val-
ues indicated by the dashed red lines. We can see that
the error in the estimation of distances due to the choice
of events c is small and becomes even smaller when the
density increases. However, in this result we still use a
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FIG. 4. Short-scale simulations in M3. The top row shows
the x (left) and y (right) coordinates of selected events c used
to estimate the distance between events a and b, which is set
to l = ρ−1/(d+1) with ρ = 103, · · · , 3 × 105. The bottom left
plot shows the distance estimations for all events shown in the
top plots as a function of the proper times τc of events c. The
dashed lines indicate the actual distances that are inferred.
The bottom right plot shows the same as the left plot but
using the estimation τ̂c of proper times of events c in Eq. (38).

bit of information not contained in the causal set because
we plug the actual proper times τc of events c to check
our predictions. Instead, the bottom right plot in Fig. 3
shows the same inferred proper distances but estimating
the value of τc using only the causal set structure:

τ̂c =
1

2
αdρ

−1/(d+1)(nC(c, a) + nC(c, b)), (38)

with αd measured numerically in the simulations. In
this case, the estimation of proper distances contains two
sources of stochasticity, the one associated with causal
overlaps and the one associated to the estimation of τc.
However, given that estimations of proper times in causal
sets can be done with a very small error when τc ≫ tP ,
as in the present case, we observe very similar results as
on the plot on the left for τc > 0.5.
Figure 4 shows the same analysis but for the estimation

of short distances. In particular, we set l = ρ−1/(d+1) and
increase ρ from 103 to 3 × 105. As in the case of long-
scale distances, selected events c are more aligned along
the plane x = 0 as the density increases. The plots at the
bottom of Fig. 4 show the perfect estimation of all dis-
tances at any value of the density, showing that, indeed,
distances can be measured in causal sets at all scales.
Finally, Fig. 5 shows results for M2 and M4 Minkowski
spacetimes, showing that proper distances can be mea-
sured with the same method in any dimension. Notice
that the differences in magnitude of the fluctuations in
different dimensions are due to the fact that we use the
same density ρ for d = 1, 2, and d = 3, which result in
different values of tP in different dimensions.
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FIG. 5. Long and Short-scale simulations in M2 and
M4 as a function of the proper time of event c. The
left column shows results for long-scale (top) and short-scale
(bottom) simulations in M2 and the right column for M4. For
the long-scale simulations, we fix the density to ρ = 105. In
the case of short-scale simulations, we set the density to ρ =
103, 3×103, 104, 3×104, 105, 3×105 (from top to bottom) and
measure the corresponding distances, which are highlighted
by the red dashed lines.

V. KINEMATICS OF MINKOWSKI CAUSAL
SETS

The continuum limit of causal set theory suggests that
at scales exceeding the Planck scale, it becomes feasible
to reconstruct the spacetime manifold structure. This
reconstruction includes the capability to define inertial
frames of reference directly on the causal set, using only
the information contained in it. Consequently, events
within a causal set can be described using spacetime co-
ordinates. Such inertial frames play a pivotal role: in ad-
dition to the spatial-temporal characterization of events,
they also enable the measurement of velocities of time-
like trajectories within a causal set, thereby establishing
the kinematics intrinsic to causal sets.

Our methodology facilitates the accurate measurement
of proper times and distances between events that are ei-
ther time-like or space-like separated using information
in the causal set alone. This accuracy allows for a reli-
able definition of inertial frames of reference, leading to
a clearer understanding of instantaneous velocities along
time-like curves. This approach enhances our ability to
interpret and analyze the dynamics within causal sets,
shedding light on the complex interplay between discrete
and continuous visions of spacetime.

In this section we discuss two aspects of this program:
how such references frames can be set up, and how some
kinematic aspects enabled by them (Lorentz factor) can
be measured.

A. Reference frames

In general, an inertial frame of reference can be defined
by a geodesic time-like curve, with one of the events in
the geodesic chosen as its origin of coordinates. In the
causal set, a geodesic time-like curve between two events
is defined as the longest chain of links connecting both
events.
Consider the geodesic made of the sequence of ordered

events

A = {ai ∈ C| · · · ≺ ai−1 ≺ ai ≺ ai+1 ≺ · · · }. (39)

Given an event b not contained in A, there is a finite
number of events in A that are space-like separated from
b, that we denote by S(b,A). We then define the distance
between event b and geodesic A as

d(A, b) = sup
ai∈S(b,A)

dMd+1(ai, b) = dMd+1(am, b), (40)

with am as the event in S(b,A) maximizing the proper
distance to b. If a0 ∈ A [34] is chosen as the origin of
coordinates, we can define the space-time coordinates of
event b, xµ

b = (x0
b ,xb), in the reference frame defined by

A and a0 as

x0
b = τC(a0, am) , |xb| = dMd+1(am, b), (41)

where τC(a0, am) is the proper time from a0 to am mea-
sured in C, as given by Eq. (1). Again, notice that this
definition is intrinsic to the causal set graph because
dMd+1(am, b) is measured in terms of causal overlaps in C
and τC(a0, am) is proportional to the number of steps in
A from a0 and am.
The determination of the individual components of

the spatial part of b’s coordinates can be performed by
defining the subspace of simultaneous events to am in A,
B⊥(A), defined as the set of space-like separated events
{b⊥ ∈ C} that have am as the event in A maximizing the
distance dMd+1(am, b⊥). The set B⊥(A) is a numerable
set of space-like separated events. Thus, using Eq. (27),
we can compute the matrix of proper lengths among
them. Using this matrix, the dimension of the subspace
can then be easily estimated by measuring the volume of
balls as a function of their radius. Finally, we can use
any embedding method from the computer science liter-
ature (like Laplacian Eigenmaps [35]) that, by using the
matrix of distances, finds a mapping between events from
B⊥(A) and points in Rd. This program will be developed
in a forthcoming publication.

B. Lorentz factor

Beyond the spatial-temporal characterization of events
in the reference frame defined above, we can also char-
acterize how objects move relative to this frame. Us-
ing the results in the previous section, we can make a
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step forward and measure the instantaneous velocity of
a time-like curve and the corresponding Lorentz factor.

Suppose that a given observer is at event b and travels
to its future event b′ using a geodesic path. This new
event b′ is at distance d(A, b′) to A with a corresponding
event a′m in A. Suppose that, during this transition, the
observer’s proper time increases by nC(b, b

′) steps in the
causal set. Therefore, the Lorentz factor –defined as the
ratio between the variation of the coordinate time and
proper time– can be defined in the causal set as

γA =
nC(am, a′m)

nC(b, b′)
. (42)

Using this equation, we can derive an expression for the
speed of a time-like curve from b to b′ in the reference
frame defined by A, v2A = 1 − γ−2

A . Similarly, the ra-
dial velocity ṙA can be computed as the variation in the
distance to the geodesic A, that is,

ṙA =
d(A, b′)− d(A, b)

τC(am, a′m)
. (43)

And using this expression along with Eq. (42), we can
evaluate the modulus of the angular component of the
velocity.

In the limit tP → 0 the expression for the Lorentz
factor in Eq. (42) converges to the actual value of γ in
Md+1 while still describing an infinitesimal variation of
the time-like curve. This can be achieved when the total
proper time between b and b′ is very small, that is when
nC(b, b

′)tP ≪ 1 and, simultaneously, the relative error in
the estimation of proper times is also very small. Ac-
cording to Eq. (2), this condition is fulfilled as long as

nC(b, b
′)tβd

P ≫ 1. This defines a range in the number of
steps in C

t−βd

P ≪ nC(b, b
′) ≪ t−1

P (44)

within which the accuracy in the evaluation of γ using
Eq. (42) is high while the proper time between events b
and b′ is small. Since βd < 1, in the limit tP → 0 the
upper bound in Eq. (44) grows faster than the lower limit
so that it is always possible to measure instantaneous
velocities of time-like curves (not necessarily geodesic) in
any reference frame with arbitrary precision.

We perform numerical simulations to test Eq. (42) in
M2. Specifically, we locate the event a0 at the origin of
coordinates and find the geodesic A connecting the event
a0 = (0, 0) and the closest event to the point (1, 0). This
geodesic is depicted by the orange line in Fig. 6. We then
select event b also at the origin of coordinates, that is, b =
a0, and events b′ that are at nC(b, b

′) geodesic steps from
a0. Due to the finiteness of our numerical simulations, in
M2 and at the density ρ = 105, the maximum value of
γ that we can sample is bounded by γ ≲ 200/nC(b, b

′).
Thus, to sample large values of the Lorentz factor we
must limit the number of steps from b to b′, which result
in a bigger error in the estimation γ. Here, we use events
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FIG. 6. Measuring the Lorentz factor in the causal set.
The plot on the right shows the geodesic A used as a reference
frame (orange) and the set of events b′ used to evaluate γA.
The plot on the left shows γA from Eq. (42) versus the actual
value in M2. The density is set to ρ = 105.

b′ such that nC(b, b
′) = 10, 20, 30, and, 40, as shown in

Fig. 6, and for each such event we compute γA using
Eq. (42). In Fig. 6, we compare this estimation to the
actual value of γ measured with the actual coordinates
in M2. Despite the noise in the estimation, due to the
finite size of the simulations, the agreement is very good.
We notice, however, a small systematic bias in γA which
is due to the boundary effects of events b′ close to the
boundary of the simulation box.

VI. CONCLUSION

The estimation of distances in causal sets is a funda-
mental roadblock on the route towards understanding
their continuum limits. Here we introduced a method-
ology to measure spatial distances in causal sets. This
methodology works well all the way down to the Planck
scale, the ultimate granularity of spacetime structure.
This breakthrough advances our understanding of the
continuum limit of discrete spacetimes, and opens av-
enues for defining local reference frames and studying
kinematics in them.
While our findings are anchored in Minkowski space-

times, it is possible to extend them to other spacetimes.
Indeed, the metric tensor of any Lorentzian manifold can
be approximated by the Minkowski metric to the first
order in a small neighborhood around any point, mak-
ing local physics indistinguishable from that in the flat
Minkowski spacetime [36]. In addition to showing that
proper distances among space-like separated events can
be measured all the way down to the Planck scale, we
have also showed that to get accurate estimates for such
distances, the proper time τc to events c must be greater

than t1−βd

P , where βd is from Eq. (2). This limit sets the
minimum scale above which a local neighborhood can
be defined around a given event. Therefore, if the char-
acteristic scale of the curvature of a spacetime is larger

than t1−βd

P , our approach can be used to define infinites-
imal distances around any event in such a spacetime. In
addition to that, the number of events within such neigh-
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borhoods can be determined, thus effectively defining the
metric tensor.

Central to our approach is the definition of causal over-
laps between events. These overlaps are a form of entan-
glement within the shared past of the events, a picture
applicable to any spacetime. We believe that this form
of entanglement must play a pivotal role in the ambi-
tious goal of constructing models of evolving causal sets
in which spatial geometry emerges from their dynamics.
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Appendix A: Causal overlap in Md+1

Without loss of generality, we place event c at the ori-
gin of coordinates and events a and b at (ta, x1,a, 0⃗) and

(tb, x1,b, 0⃗), respectively, with ta = tb and x1,b = −x1,a.
Events a and b are at proper time τc from c and so t2a =
τ2c +x2

1,a. To compute the causal overlap OMd+1(a, b), we
first must compute the volume Vc(a, b) at the intersection
of the future light cone of c, given by the equation t = r,
and the past light cones of a and b, which in spherical
coordinates are given by

t = ta −
√
r2 + x2

1,a − 2x1,ar cos θ, (A1)

t = tb −
√
r2 + x2

1,b + 2x1,br cos θ, (A2)

and where we have chosen the coordinate x1 = r cos θ,
with θ ∈ [0, π]. After some algebra, we obtain

Vc(a, b) =
4π(d−1)/2

Γ
(
d−1
2

) ∫ π/2

0

sind−2 θdθ

∫ r∗(θ)

0

rd−1
(
ta − r −

√
r2 + x2

1,a + 2x1,ar cos θ
)
dr (A3)

where

r∗(θ) =
τ2c

2(ta + x1,a cos θ)
(A4)

Notice that by setting x1,a = 0, we recover the volume of the Alexandrov set in Eq. (6). Thus, the causal overlap can
be written as

OMd+1(a, b) =
2d+2(d+ 1)Γ

(
1 + d

2

)
√
πΓ

(
d−1
2

) ∫ π/2

0

sind−2 θdθ

∫ r̂∗(θ)

0

rd−1
(√

1 + x̂2
1,a − r −

√
r2 + x̂2

1,a + 2x̂1,ar cos θ
)
dr

(A5)

where

r̂∗(θ) =
1

2(
√
1 + x̂2

1,a + x̂1,a cos θ)
and x̂1,a =

x1,a

τc

(A6)

Taking the limit x̂1,a → 0 in Eq. (A5) leads to the asymp-
totic result Eq. (25).
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