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Passeig Llúıs Companys 23, E-08010 Barcelona, Spain

Graph-structured data provide a comprehensive description of complex systems, encompassing not
only the interactions among nodes but also the intrinsic features that characterize these nodes. These
features play a fundamental role in the formation of links within the network, making them valuable
for extracting meaningful topological information. Notably, features are at the core of deep learning
techniques such as Graph Convolutional Neural Networks (GCNs) and offer great utility in tasks like
node classification, link prediction, and graph clustering. In this letter, we present a comprehensive
framework that treats features as tangible entities and establishes a bipartite graph connecting nodes
and features. By assuming that nodes sharing similarities should also share features, we introduce
a geometric similarity space where both nodes and features coexist, shaping the structure of both
the node network and the bipartite network of nodes and features. Through this framework, we can
identify correlations between nodes and features in real data and generate synthetic datasets that
mimic the topological properties of their connectivity patterns. The approach provides insights into
the inner workings of GCNs by revealing the intricate structure of the data.

The nature of link formation in complex networks has
been a recurrent theme during the last two decades of
research in network science. Understanding the key fac-
tors contributing to the emergence of interactions among
individual elements is the first step to understanding
the system as a whole and, thus, the emerging behav-
iors that arise from such interactions. Beyond purely
topological link formation mechanisms, such as preferen-
tial attachment [1], nodes in a network have well-defined
features that also play a role during the link formation
process. In this context, network geometry [2] offers a
simple yet powerful approach to explaining the topology
of networks in terms of underlying metric spaces that ef-
fectively encode topological properties and intrinsic node
attributes [3–5]. Only recently, the explosion of graph-
structured data (networks with annotated information) is
being used to understand the emergence of communities
in networks [6–10] or their percolation properties [11].

Graph-structured data is particularly relevant for deep
learning techniques. Specifically, Graph Convolutional
Neural Networks (GCNs) have emerged as a powerful
tool for effectively modeling and analyzing graph data,
enabling us to leverage the expressive power of deep
learning on irregular and non-Euclidean domains [12, 13].
GCNs are an extension of classical Convolutional Neural
Networks (CNNs) that are designed to work with graph-
structured data. While CNNs are effective at extracting
spatial patterns from grid-like data, GCNs go beyond by
considering the graph structure. GCNs aggregate infor-
mation from the neighborhood of each node in a graph,
allowing them to propagate information and capture the
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graph topology. This makes GCNs particularly useful
for tasks like node classification, link prediction, graph
clustering, or recommendation systems, to name just a
few.

Despite their undeniable effectiveness, machine learn-
ing techniques, in particular CNNs and GCNs, are crit-
icized for their lack of explainability, a problem referred
to as the black box problem [14]. An implicit assump-
tion made by GCNs is that there must exist correla-
tions between connected (or topologically close) nodes in
the graph so that they are “similar”, and similar nodes
should share common features. Only when this is the
case, GCNs are able to detect patterns in the data. Thus,
to solve the black box problem, we must first understand
in detail the structure of the data that feeds GCNs.

In this paper, we introduce a simple yet comprehensive
framework to describe real graph-structured datasets.
Our approach has two critical contributions. First, we
consider features as real entities that define a bipartite
graph of nodes connected to features. Second, we assume
that if two nodes are similar when they share features,
then two features are also similar if they share nodes.
Following this reasoning, we introduce a geometric simi-
larity space where both nodes and features coexist, shap-
ing the structure of both the network between nodes and
the bipartite network of nodes and features. Using this
framework, we are able to detect correlations between
nodes and features in real data and generate synthetic
datasets with the same topological properties.

A typical graph-structured dataset consists of a set of
Nn nodes forming a complex network Gn and a set of
Nf features associated with the same set of nodes. The
features are usually binarized, so the set of features for

a given node i is represented as a vector f⃗i ∈ RNf with
entries of zero or one, indicating the presence or absence
of a particular feature. For example, the Cora dataset is
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a standard benchmark used in GCN studies. It is defined
by a citation network among scientific publications –or
nodes– and each publication is characterized by a vec-
tor, where the entries indicate the presence or absence of
specific words –or features– from a unique dictionary.

To fully characterize such complex graph-structured
data, we must first understand the complex network Gn

that defines the relationships between nodes. In CNNs
applied to images, for instance, this network is defined
by the nearest neighbors in a two-dimensional grid of
pixels. However, in complex graph-structured data, the
relationships between nodes are better described by a
complex network with intricate topological properties.
Our research over the last decade has shown that com-
plex networks, such as the ones of interest in this con-
text, can be accurately characterized using geometric
random graph models [2]. In these models, nodes are
positioned in a metric space, and the probability of con-
nection between nodes depends on their distances in this
space. This approach has led to the emergence of net-
work geometry as a field, providing a comprehensive un-
derstanding of real complex networks. Geometric mod-
els in a latent hyperbolic metric space have proven ef-
fective in generating networks with realistic topologi-
cal properties, including heterogeneous degree distribu-
tions [3, 4, 15], clustering [4, 15–17], small-worldness [18–
20], percolation [21, 22], spectral properties [23], and
self-similarity [3]. They have also been extended to en-
compass growing networks [5], weighted networks [24],
multilayer networks [25, 26], networks with community
structure [27–29], and serve as the basis for defining a
renormalization group for complex networks [30, 31]. In
this case, this approach is particularly interesting as it
naturally introduces the concept of an underlying simi-
larity space, allowing the unambiguous quantification of
similarity between nodes.

To describe the network between nodes Gn, we employ
the S1 model, also known as the geometric soft configu-
ration model [3, 4, 32, 33]. In this model, each node is
assigned two hidden variables (κ, θ) that determine its ex-
pected degree and position on a one-dimensional sphere
of radiusR = Nn/2π. This sphere represents the abstrac-
tion of the similarity space where nodes are placed [34].
The connection probability between two nodes with hid-
den variables (κ, θ) and (κ′, θ′) is defined as follows:

p(κ, κ′,∆θ) =
1

1 + χβ
with χ ≡ R∆θ

µκκ′ , (1)

where ∆θ = π− |π− |θ− θ′|| represents the angular sep-
aration between the nodes, β > 1 [35] is the inverse of
the temperature of the graph ensemble and determines
the level of clustering in the network, and µ = β

2π⟨k⟩ sin
π
β

is a parameter that fixes the average degree ⟨k⟩ (see the
top of panel (a) in Fig. 1). The hidden variables of the
nodes can either be generated from an arbitrary proba-
bility density ρ(κ, θ) if the goal is to create synthetic net-
works or can be inferred from a real network by maximiz-
ing the likelihood of the model to reproduce the desired

(κ, θ)

θ

θn

(κn, θn)

θf

(κf, θf)

  (a) (b)

FIG. 1. The sketch at the top of panel (a) depicts the gen-
eration of a network using the S1 model. The bottom part
illustrates the generation of the bipartite network between
nodes (green circles), keeping the same angular coordinates,
and features (rounded purple squares). Panel (b) illustrates
the method for measuring the bipartite clustering. For ex-
ample, the node at the center is connected to four different
features. Two features are considered connected if they share
at least a common node other than the central node. The
bipartite clustering of the node is then calculated by deter-
mining the fraction of connected pairs of features, following
the standard definition of clustering coefficient in unipartite
networks. The same definition applies to the bipartite clus-
tering coefficient of features.
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FIG. 2. Heatmap of the angular coordinates of nodes inferred
by Mercator from Gn (in the x-axis) and from Ĝn (in the y-
axis) for the Cora (a) and Facebook (b) datasets. A detailed
description of these datasets is provided in Appendix B. Color
indicates the number of nodes in each pixel.

real network. In this work, we use the latter approach
through the embedding tool called Mercator [36].
As mentioned earlier, GCNs are effective when there

is a correlation between the features of nodes and the
underlying graph topology Gn. Therefore, it is essen-
tial to identify this correlation in real-world datasets. To
accomplish this, we define a new unipartite network be-
tween nodes, called Ĝn, where two nodes are connected if
they share a significant number of features (for technical
details, refer to Appendix A). It is important to note that

the links in the networks Gn and Ĝn are defined by differ-
ent connection mechanisms so that, a priori, they could
be unrelated. In order to measure any possible correla-
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FIG. 3. Topological properties of Gn,f for the Cora and Facebook datasets (symbols) and their synthetic counterparts generated
by the bipartite-S1 model with the DPGR algorithm in Eq. (3) (red solid lines). The top row (a-f) shows the complementary
cumulative distribution functions of nodes and features degrees, whereas the insets in these plots show the average nearest
neighbors degree functions. The bottom row (c-h) shows the bipartite clustering spectrum of nodes and features as a function
of nodes and features degrees, respectively. The orange shaded area represents two-σ intervals of the ensemble. Exponential
binning is applied in the computation of k̄nn and cb for the features.

tion between them, we assume that Ĝn also follows the S1
model. Subsequently, the angular coordinates of nodes
from Gn are inferred using Mercator [36], and these co-
ordinates are then employed as initial estimates to infer
the angular coordinates of nodes from Ĝn, again using
Mercator. The outcomes are depicted in Fig. 2, show-
casing the results obtained from the Cora and Facebook
datasets (additional information about these datasets can
be found in Appendix D. The figure clearly illustrates a
significant correlation between angular coordinates deter-
mined from topology and those determined from features.
In contrast, randomized versions of Ĝn, which maintain
the degree distribution and clustering coefficient, do not
exhibit this correlation (Appendix A). This empirical evi-
dence strongly suggests that the similarity space of nodes
and features is highly congruent.

Building upon this result, we propose our model for
graph-structured data. The key aspect of our approach
is to view the set of nodes and their features as a bipar-
tite graph Gn,f . In this representation, each node has a
degree kn that indicates the number of distinct features
it possesses, while each feature has a degree kf that rep-
resents the number of connected nodes. The top row of
Fig. 3 displays the complementary cumulative distribu-
tion function of node and feature degrees for the Cora
and Facebook datasets. Across all the datasets we exam-
ined, we observed a consistent pattern characterized by a
homogeneous distribution of node degrees and a hetero-
geneous distribution of feature degrees in the bipartite
graph Gn,f . The insets in these plots also reveal weak
correlations between the degrees kn and kf of connected
pairs.

Our objective is to develop a model for this bipartite
graph that is correlated with the node network Gn. To
achieve this, we propose a geometric model called the
bipartite-S1 model [37, 38], where the similarity space is
shared between Gn and Gn,f . In this model, each node
is assigned two hidden variables (κn, θn), where κn rep-
resents its expected degree in the bipartite graph, and
the angular coordinate corresponds to that of Gn, i.e.,
θn = θ. Similarly, features are equipped with two hidden
variables (κf , θf ), indicating their expected degrees and
angular positions in the common similarity space. The
probability of a connection between a node and a feature
with hidden degrees κn and κf , separated by an angular
distance ∆θ, is given by:

pb(κn, κf ,∆θ) =
1

1 + χβb
with χ ≡ R∆θ

µbκnκf
, (2)

where µb =
βb

2π⟨kn⟩ sin
π
βb

is a parameter determining the

average degree of nodes ⟨kn⟩ and features ⟨kf ⟩ = Nn

Nf
⟨kn⟩

(the sketch in Fig. 1 illustrates the construction of the
model). Similar to the S1 model, this choice ensures that
the expected degrees of nodes and features with hidden
degrees κn and κf are k̄n(κn) = κn and k̄f (κf ) = κf ,
respectively [37, 38]. The hidden variables of nodes and
features can be generated from arbitrary distributions
or fitted to replicate the topology of a real network of
interest.
In the latter case, following the approach in [39], it is

also possible to define the “microcanonical” version of the
model, by using a degree-preserving geometric random-
ization (DPGR) Metropolis-Hastings algorithm. This al-
gorithm allows us to explore different values of βb while
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FIG. 4. Bipartite clustering coefficient for the Cora and Face-
book networks (symbols) and their surrogates generated by
our model with different values of βb (solid lines). The plots
show the bipartite clustering of the networks obtained by re-
moval of a number of the highest degree features as a function
of the corresponding fluctuations of features’ degrees. In all
plots, solid lines represent averages over 100 synthetic net-
works generated by our model.

exactly preserving the degree sequences. Given a net-
work and after assigning angular coordinates at random
to all nodes and features, the algorithm randomly selects
a pair of node-feature links in−jf and ln−mf , and swaps
them (avoiding multiple connections) with a probability
given by

pswap = min

[
1,

(
∆θinjf∆θlnmf

∆θinmf
∆θjf ln

)βb
]
, (3)

where ∆θ is the angular separation between the corre-
sponding pair of nodes. This algorithm maximizes the
likelihood that the network is generated by the bipartite-
S1 model, while preserving the degree sequence and the
set of angular coordinates. Notice that βb = 0 corre-
sponds to the bipartite configuration model.

In the S1 model, the parameter β governs the clustering
coefficient and thus influences the relationship between
the network topology and the underlying metric space.
Similarly, the parameter βb accounts for the coupling be-
tween the bipartite graph Gn,f and the underlying metric
space. As both Gn and Gn,f are defined on the same un-
derlying metric space, the parameters β and βb control
the correlation between them. It is therefore important
to measure the value of βb for a real dataset. To achieve
this, we use the simplest possible extension of the clus-
tering coefficient to bipartite networks, denoted as c̄b, as
explained in the caption of Fig. 1.

In bipartite networks, c̄b is strongly influenced by the
heterogeneity of the features’ degree distribution and, for
finite-sized networks, it can reach high values even in the

TABLE I. Parameters of the bipartite network Gn,f for the
analyzed datasets. Parameter β for Gn is directly inferred by
Mercator.

Nn Nf ⟨kn⟩ ⟨kf ⟩ βb β

Cora 2708 1432 18.174 34.369 0.9 1.6

Facebook 12374 3720 7.542 25.086 2.0 1.7

Citeseer 3264 3703 31.745 27.982 0.9 1.6

Chameleon 2277 3132 21.545 15.663 1.0 1.6

configuration model (see Appendix C). Thus, measuring
βb by adjusting c̄b can be misleading and we took a dif-
ferent approach.
We sorted the degrees of features in decreasing or-

der and removed 2l of the highest degree features from
the original network, starting from the highest degree,
where l = 0, 1, 2, · · · . After each removal, we measured
the bipartite clustering coefficient c̄b(l) of the remain-
ing network and the fluctuations in features’ degrees as
⟨kf (kf − 1)⟩/⟨kf ⟩ (see Appendix C). Fig. 4 illustrates
the behavior of the bipartite clustering for the Cora and
Facebook datasets, considering values of l up to lmax = 8.
We repeated this procedure for networks generated by
our model with the DPGR algorithm Eq. (3) and dif-
ferent values of βb. Interestingly, for real networks, the
bipartite clustering coefficient c̄b(l) decreases slowly as
hubs are removed. On the other hand, in the configura-
tion model with βb = 0, c̄b(l) decreases rapidly when the
heterogeneity of the degree sequence is eliminated, even
if the original network exhibits similar values to the real
networks. As we increase the value of βb, we observed
that our model can accurately replicate the behavior of
c̄b(l), enabling us to estimate the values of βb in real net-
works. Beyond the practical estimation of parameter βb,
the slow decay of clustering when removing hubs provides
strong empirical evidence that the bipartite network be-
tween nodes and features is governed by an underlying
similarity metric space.
Table I presents the properties of the analyzed real net-

works and the inferred values of β and βb. Using these
values, we generated network surrogates with the DPGR
algorithm and compared their topological properties: de-
gree distributions, degree-degree correlations, and bipar-
tite clustering spectrum. Fig. 3 and Fig. 9 in Appendix
E display the ensemble average and the two-σ interval for
all the measures. In all cases, the model accurately re-
produces these properties. However, the model could be
further improved by considering that nodes and features
may not be uniformly distributed in the similarity space,
but instead defining geometric communities, as discussed
in [27, 28].

To summarize, our approach represents a paradigm
shift in the description of complex graph-structured data.
The crucial element in our framework is to view the rela-
tionships between nodes and features as a bipartite graph
influenced by the same underlying similarity space that
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shapes the topology of the network between nodes. We
hypothesize that this shared similarity space, along with
the strength of the coupling between networks Gn and
Gn,f controlled by parameters β and βb, underlies the ef-
fectiveness of GCNs. If this conjecture holds true, our
formalism could provide a crucial component in address-
ing the black box problem.
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Appendix A: Correlation between the inferred
angular coordinates in Gn and Ĝn

To evaluate the correlation between the features of
nodes and the underlying graph topology Gn, the unipar-
tite network Ĝn is extracted from the original bipartite
network Gn,f . The procedure entails the projection of
Gn,f onto the set of nodes, resulting in a weighted uni-
partite network of nodes where the edge weights reflect
the number of shared features between pairs of nodes [40].
Typically, this yields a highly dense network with many
spurious connections. Then, the disparity filtering [41] is
employed to capture the relevant connection backbone in
this network.

The disparity filtering method normalizes the edge
weights and determines the probability αij that an edge
weight conforms to the null hypothesis, which assumes
that the total weight of a given node is distributed uni-
formly at random among its neighbors. By applying a
significance level α, the links with αij < α that reject
the null hypothesis are deemed statistically significant
and form the desired network Ĝn along with their asso-
ciated nodes.

The correlation between Gn and Ĝn is assessed by as-
suming that Ĝn follows the S1 model. The angular coor-
dinates of nodes in Gn are determined using the Mercator
embedding tool. Subsequently, these coordinates serve as
initial estimates for inferring the angular coordinates of
nodes in Ĝn using Mercator once again. The process is
performed for a total of 10 times, where in each itera-
tion, the coordinates obtained from the previous step are
utilized as the initial estimates.

In Fig. 5, the top row clearly demonstrates a strong
correlation between the angular coordinates of nodes of
Gn and Ĝn in the Cora and Facebook datasets. To rule
out the possibility that this correlation is induced by the
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FIG. 5. Heatmap of the angular coordinates of nodes inferred
by Mercator for the Cora and Facebook datasets. In all the
plots, the X-axis shows the angular coordinates of nodes in
Gn. In the top row, the Y-axis corresponds to the angular
coordinates of nodes in Ĝn, while in the bottom row, it repre-
sents the angular coordinates of a randomized version of Ĝn

called ĜDPGR
n . For the Cora dataset, the significance level

of α = 0.05 in the disparity filtering method yields a back-
bone network consisting of 92% of the nodes and 0.006% of
the links. For Facebook, using α = 0.03 produces a backbone
network with 72% of the nodes and 0.003% of the links.

fact that we are using the angular coordinates of Gn as
initial conditions to find the coordinates of Ĝn, we repeat
the very same procedure with a randomized version of Ĝn,
ĜDPGR
n , generated using DPGR algorithm with the same

β that Mercator assigns to Ĝn. In this way, the random-
ized version has the same degree distributions and the
same level of clustering as Ĝn. The bottom row of Fig. 5
shows no correlation between angular coordinates of Gn

and ĜDPGR
n , which proves that the correlation found in

Fig. 5 (a,c) is real and not an artifact of the method.
Finally, Fig. 6 shows similar results for the Citeseer and
Chameleon datasets. These experiments focuses on the
angular coordinates of nodes within the giant compo-
nents of networks.

Appendix B: Dataset description

Cora [42]: It is a directed network of scientific publica-
tions, where an edge from in to jn indicates that paper i
has cited paper j. Additionally, each paper is associated
with a feature vector containing entries of either zero or
one, which respectively show the absence or presence of
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FIG. 6. Heatmap of the angular coordinates of nodes inferred
by Mercator for the Citeseer and Chameleon dataset. In all
the plots, the X-axis shows the angular coordinates of nodes
in Gn. In the top row, the Y-axis corresponds to the an-
gular coordinates of nodes in Ĝn, while in the bottom row,
it represents the angular coordinates of its randomized ver-
sion ĜDPGR

n . For the Citeseer dataset, applying a significance
level of α = 0.02 results in a backbone network with 88% of
nodes and 0.003% of edges. In the Chameleon dataset, set-
ting α = 0.07 generates a backbone network including 95% of
nodes and 0.023% of links.

specific words from a predefined dictionary. Therefore,
a link between node in and feature mf in the bipartite
network signifies that the mth word from the dictionary
has appeared in the paper i.

Facebook [43]: The network consists of Facebook
pages categorized into four groups: politicians, govern-
mental organizations, television shows, and companies.
The links in the network represent mutual likes between
these pages. Every page is assigned a node feature vec-
tor that is derived from its description, providing a sum-
mary of its purpose. These feature vectors indicate the
presence or absence of specific words from a given bag of
words. Accordingly, each node in the bipartite network is
connected to the corresponding features associated with
the words present in the page description. The degree
distribution of nodes in the bipartite network is strongly
bimodal. In this paper, in order to focus on one of the
modes present in this distribution, we exclude nodes with
more than 15 features. Subsequently, we remove these
nodes from the unipartite network.

Citeseer [42]: It is a directed citation network of pa-
pers where binary node features indicate whether specific
words are present or absent in each paper. Consequently,

in the unipartite network, each link between two papers
signifies that one paper has cited the other. Similarly,
in the bipartite network, a link between nodes and fea-
tures denotes the inclusion of a specific word within the
corresponding paper.
Chameleon [43]: The network comprises Wikipedia

articles centered around chameleons, where the connec-
tions represent mutual hyperlinks between the pages.
The binary feature vectors of the nodes imply the ex-
istence of informative nouns within the text of each
Wikipedia article.
In this paper, we focus on simple graphs by removing

self-loops and multiple links. We also convert directed
networks into their undirected counterparts. Further-
more, we remove nodes and features with zero degrees,
ensuring that only relevant and interconnected elements
are considered.

Appendix C: Bipartite clustering coefficient in the
configuration model

In a network of Nn nodes and Nf features generated
by a bipartite soft configuration model, the connection
probability between a node with expected degree κn and
a feature of expected degree κf is given by

pκn,κf
=

κnκf

Nf ⟨κf ⟩
=

κnκf

Nn⟨κn⟩
. (C1)

We define the bipartite clustering coefficient of a fea-
ture as the probability of two of its neighboring nodes
being connected at least through a feature different from
the one being analyzed. Using this definition, it is easy
to see that the bipartite clustering coefficient of features
for the soft configuration model is given by

c features
b = 1−

∫ ∫
κnκ

′
nρn(κn)ρn(κ

′
n)

⟨κn⟩2
e

−κnκ′
n⟨κ2

f ⟩

Nf ⟨κf ⟩2 ,

(C2)
where we have used that the probability that a feature of
expected degree κf is connected to a node of expected de-
gree κn is ρ(κn|κf ) = κnρn(κn)/⟨κn⟩ and where ρn(κn)
is the distribution of expected degrees of nodes. Anal-
ogously, the bipartite clustering coefficient of nodes is
given by

c nodes
b = 1−

∫ ∫
κfκ

′
fρf (κf )ρf (κ

′
f )

⟨κf ⟩2
e

−κfκ′
f ⟨κ2

n⟩

Nn⟨κn⟩2 . (C3)

In the soft configuration model ⟨κf ⟩ = ⟨kf ⟩ and ⟨κ2
f ⟩ =

⟨kf (kf − 1)⟩, and ⟨κn⟩ = ⟨kn⟩ and ⟨κ2
n⟩ = ⟨kn(kn − 1)⟩

where kf and kn are the actual degrees of nodes and
features, respectively.
Empirical measures show that quite generally the bi-

partite graphs Gn,f are characterized by homogeneous
node degree distributions. Thus, we assume that the
distribution of hidden nodes’ degrees is distributed by a
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FIG. 7. Bipartite clustering coefficient for the Citeseer and
Chameleon networks (symbols) and their surrogates gener-
ated by our model for different values of βb (solid lines). The
plots show the bipartite clustering of the networks obtained
by removal of a number of the highest degree features as a
function of the corresponding fluctuations of features’ degrees.
The solid lines represent the average bipartite clustering over
100 synthetic networks generated by our model.

Dirac delta function, that is, ρn(κn) = δ(κn − ⟨κn⟩). In
this case, Eq. (C2) become

c features
b = 1− e

−⟨κn⟩⟨κ2
f ⟩

Nn⟨κf ⟩ (C4)

The bipartite clustering coefficient for nodes in
Eq. (C3) cannot be, in general, further simplified unless
we specify ρf (κf ). However, for not very heterogeneous
distributions of features’ degrees, and in the thermody-
namic limit it reads as

c nodes
b =

1

Nn

⟨kf (kf − 1)⟩2
⟨kf ⟩2

(C5)

In all cases, the bipartite clustering coefficient of nodes
increases with the heterogeneity of the distribution of
features’ degrees. By introducing the variable x ≡
⟨kf (kf−1)⟩

⟨kf ⟩ , Eqs. (C4) and (C5) can be rewritten in terms

of x as

c features
b = 1− e⟨kn⟩x/Nn (C6)

c nodes
b =

x2

Nn
, (C7)

which highlights that bipartite clustering is strongly
influenced by the heterogeneity of the features’ degree
distribution, and for finite-sized networks it can be very
large due to the high value of x.

At the light of these results, to detect significant clus-
tering in real datasets, we propose a sequential approach

in which 2l, l = 0, 1, 2, ..., of the features with the highest
degrees are consecutively removed from the original real-
world network. The bipartite clustering coefficient of the
resulting network cb(l) is then plotted as a function of the

fluctuations in features’ degrees, expressed by
⟨kf (kf−1)⟩

⟨kf ⟩ .

The experimental results for the Citeseer and Chameleon
datasets in Fig. 7 illustrate that in real-world networks,
as hubs are progressively removed, cb(l) exhibits a slow
decrease. Conversely, in bipartite configuration networks
generated by our model with βb = 0 in the DPGR algo-
rithm, cb(l) shows a rapid decline as the heterogeneity of
the features’ degree is reduced. By increasing the value of
βb, our model effectively replicates the behavior of cb(l),
enabling us to estimate the bipartite clustering coefficient
in real-world networks.
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Appendix D: Topological properties of unipartite networks Gn
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FIG. 8. Topological properties of Gn for all datasets (symbols) and their synthetic counterparts generated by the S1 model
using DPGR method (red solid lines). The top row (a-j) shows the complementary cumulative distribution functions of nodes.
The middle row (b-k) represents the average nearest neighbors degree functions, and the bottom row (c-l) shows the clustering
spectrum as a function of node degrees. Exponential binning is applied in the computation of knn and c. The orange shaded
area represents two-σ intervals around the mean for 100 realizations of the model.
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functions of nodes and features degrees, whereas the insets in these plots show the average nearest neighbors degree functions.
The bottom row (c-h) shows the bipartite clustering spectrum as a function of nodes and features degrees. Exponential binning
is applied in the calculation of knn and cb for the features. The orange shaded area represents two-σ intervals around the mean
for 100 realizations of the model.
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rano, Phys. Rev. Res. 2, 023040 (2020).

[33] M. A. Serrano and M. Boguñá, The Shortest Path to
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