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A B S T R A C T

Many empirical studies have revealed that the occurrences of contacts associated with human activities are
non-Markovian temporal processes with a heavy tailed inter-event time distribution. Besides, there has been
increasing empirical evidence that the infection and recovery rates are time-dependent. However, we lack
a comprehensive framework to analyze and understand non-Markovian contact and spreading processes on
temporal networks. In this paper, we propose a general formalism to study non-Markovian dynamics on non-
Markovian temporal networks. We find that, under certain conditions, non-Markovian dynamics on temporal
networks are equivalent to Markovian dynamics on static networks. Interestingly, this result is independent of
the underlying network topology.
1. Introduction

Spreading dynamics on complex networks has become a hot re-
search topic during the last decades [1]. Due to the covid-19 pan-
demic, this research field is nowadays in the agenda of public health
systems all over the world, as it helps them to take informed deci-
sions on mitigation policies and vaccination campaings. Traditionally,
the spreading dynamics is studied with compartmental models such
as the susceptible–infected–susceptible (SIS) and susceptible–infected–
recovered (SIR) models [2]. These models have provided invaluable
insights into the nature of spreading mechanisms, including the dif-
fusion of innovations [3–6], the spread of cultural fads [7,8] and
viruses [9,10]. At the same time, network science allows us to under-
stand the interplay between the different spreading mechanisms at play
and the underlying network topology, like the absence of epidemic
thresholds [11] or the effect of self-similarity [12] and community
structure [13]. However, classical models all assume that spreading
dynamics are Markovian and take place on static networks. While
simplifying the analysis, these assumptions are strongly challenged
by empirical observations. On the one hand, a large number of em-
pirical studies have shown that the distributions of infectious and
recovery periods of real diseases are far from being exponential, and
so Markovian [14–20]. On the other hand, a large amount of works
show that modeling the underlying substrates where epidemics spread

∗ Corresponding authors.
E-mail addresses: tangminghan007@gmail.com (M. Tang), sgguan@phy.ecnu.edu.cn (S. Guan), marian.boguna@ub.edu (M. Boguñá).

as temporal networks provides a more reasonable representation of
real-world complex systems [21–23].

In recent years, researchers have made significant strides in ad-
dressing the limitations of current models in studying the dynamics
of infectious diseases. One approach has been to focus on the effect
of non-Markovian dynamics, such as non-Poissonian transmission and
recovery processes [24–26]. Theories have been proposed to explain
these complex processes and it has been shown that a non-Markovian
infection process can dramatically alter the epidemic threshold of
the susceptible–infected–susceptible model [27]. A discrete-time non-
Markovian SEIS model has been proposed to address a wide range
of real-world spreading phenomena [28]. Interestingly, non-Markovian
effects in recovery processes can also make the network more resilient
against large-scale failures [29] and, in some cases, it has been demon-
strated that non-Markovian dynamics can be reduced to Markovian
dynamics, simplifying the modeling process [24,26,30,31]. In addition,
it has been found that each Markovian SIS may be represented as non-
Markovian SEIS model [32]. Finally, non-Markovian dynamics may
induce an effective complex contagion mechanism, with correlated
infectious channels, leading to the appearance of novel exotic epidemic
phases [33].

A parallel line of research aims to understand the effect of tem-
poral networks on spreading dynamics. To better understand complex
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systems with changing network topologies, various temporal network
models have been proposed to replace static, time-aggregated net-
works [34–36]. These models reveal that memory effects can raise the
epidemic threshold in the SIR model but lower it in the SIS model [37].
The most significant factor for spreading dynamics is long-time tem-
poral structures like node and link turnover [38]. Compared with
time-aggregated networks, non-Markovian characteristics in temporal
networks can result in a slowdown or acceleration of diffusion [39], it
can improve the navigability properties of the system [40], or regulate
the bursty behavior of dynamic processes [41]. However, there is cur-
rently a lack of research that considers both non-Markovian spreading
processes and non-Markovian contact processes simultaneously.

In this paper, we partially fill this gap and consider a non-Markovian
SIS dynamics evolving on non-Markovian temporal networks. We de-
velop a mean field approach and show that it can predict well the
transient dynamics, the steady state, and the epidemic threshold. Be-
sides, our results show that, in some cases, the steady state of non-
Markovian SIS dynamics on temporal networks are equivalent to a
Markovian dynamics on the static version of the networks but with an
effective infection rate that depends on the details of the particular non-
Markovian dynamics. These results provide a deeper understanding of
the dynamics of infectious diseases and may help to inform effective
disease control and prevention strategies.

2. Model description

To generate a temporal network, we first consider an unweighted
and undirected static network as the underlying structure on which
temporal interactions take place [42]. We assume that, in line with the
laws of interpersonal networks, node and edge additions and deletions
take place on a much longer time scale than the dynamic time scale
of events on existing edges. For example, the time scale for making
new friends or alienating old friends is typically longer than the time
scale for interacting with existing friends. Following this idea, we
consider a static network 𝐺(𝑁,𝐸) with 𝑁 nodes and 𝐸 edges as the
nderlying structure. However, in many real complex networks, even
f the underlying network is static, nodes and edges can be temporarily
nactive. In our model, nodes are always active whereas edges obey a
tochastic two-state process and can be either active or dormant. Only
ctive edges can be used to propagate the disease from one node to
ts neighbor. We further consider all edges as identical and statistically
ndependent. The two-state process at each edge is defined by the prob-
bility densities 𝜑off(𝜏) and 𝜑on(𝜏), accounting for the random time each

edge remains in the dormant (off) or active (on) states, respectively.
When the pdf functions 𝜑off(𝜏) and 𝜑on(𝜏) are not exponentials, the
system is intrinsically non-Markovian because the instantaneous rate
for the transition between the on- and off-states (similarly between the
off- and on-states) depends on the time the system has already remained
in the on-state (off-state). These rates can be computed as [43]

𝜔on(𝜏) =
𝜑on(𝜏)
𝛷on(𝜏)

and 𝜔off(𝜏) =
𝜑off(𝜏)
𝛷off(𝜏)

, (1)

here 𝛷on(𝜏) and 𝛷off(𝜏) are the corresponding survival probabilities
iven by

on(𝜏) = ∫

∞

𝜏
𝜑on(𝜏′)d𝜏′ and 𝛷off(𝜏) = ∫

∞

𝜏
𝜑off(𝜏′)d𝜏′. (2)

hen on–off dwell times are exponentially distributed with rates 𝜆on
nd 𝜆off, then 𝜔on(𝜏) = 𝜆on and 𝜔off(𝜏) = 𝜆off and the process is

Markovian. Any other distribution introduces memory in the process.
This is, however, the weakest form of memory as it only last between
two consecutive events. Yet, this approach is useful in many real-
world systems. To guarantee the convergence to the steady state of the
process, the pdf functions for the on–off dwell times can take any form
as long as their averages ⟨𝜏on⟩ and ⟨𝜏off⟩ are finite.

In this paper, we are interested in the temporal evolution of an
2

epidemic outbreak starting from a small fraction of the population
nfected at 𝑡 = 0. However, we assume that, prior to the start of the
utbreak, the on–off dynamics of the network is already at its steady
tate. In this condition, the probability to find any given edge in the
n-state is [44]

on =
⟨𝜏on⟩

⟨𝜏on⟩ + ⟨𝜏off⟩
, (3)

and, given that we find the edge in the on-state, the pdf of the time
since the edge entered the on-state is [44]

𝜓on(𝜏) =
𝛷on(𝜏)
⟨𝜏on⟩

. (4)

Notice that 𝜓on(𝜏) is equal to 𝜑on(𝜏) only when the later distribution
is exponential. Finally, it is important to stress that the two-state
dynamics defining the temporal network is completely blind to the
epidemic state of the system, whereas, as discussed later, the opposite
is not true.

On top of the temporal network described above, we implement
the non-Markovian SIS model. In this model, infected nodes recovers
spontaneously after a random time 𝜏 that obeys the probability density
function 𝜑rec(𝜏). Infection events, on the other hand, can only take
place through active edges when one of the nodes is in the infected
state and the other in the susceptible state, defining an active infectious
edge (AIE). Once the infection event is initiated, the actual infection of
the susceptible node takes a random time governed by the pdf 𝜑inf(𝜏).
Similarly to the on–off dynamics, we can define the instantaneous
recovery and infection rates 𝜔rec(𝜏) and 𝜔inf(𝜏) as in Eqs (1). In this
work, as opposed to complex contagion mechanisms, we consider a
simple infection scheme where the total infection rate of a node is the
sum of the infection rates of incident edges.

When temporal events are not exponentially distributed, it is impor-
tant to precisely define when each event is initiated. Recovery events
of infected nodes do not depend on the network connectivity and, thus,
are initiated at the very moment nodes get infected. This is not the case
for infection events, for which it is not clear where to set the onset of
the infection. One can adopt a node-centric approach from the point
of view of the susceptible node and set the onset time at the moment
an AIE is created. We call this approach ‘‘Rule 1’’ (R1) [45]. Fig. 1
shows three examples of the application of Rule 1: in the first one,
both nodes A and B are originally susceptible and the edge is active.
Then individual A becomes infected by one of his neighbors other than
B, generating a new AIE and defining this time as the onset of the
infection. In the second example, node A is infected, B is susceptible
and the edge connecting them is dormant. Then, the edge becomes
active while node A is still infected, generating an AIE and setting at
this moment the onset of the infection. In the third example, both nodes
A and B are infected and the edge is active. Then node B recovers and
becomes susceptible again. This again defines a new AIE and sets the
onset of the infection from A to B. Unlike Rule 1, we can adopt a node-
centric approach from the point of view of the infected node and set
the onset of the infection at the time the node gets infected, regardless
of the state of its edges or neighbors. We call this approach ‘‘Rule 2’’
(R2) [45]. The approach takes into account the different infectivity
phases an infected individual can go through. For instance, for diseases
with incubation periods, when the individual is infected but not very
infectious. Finally, we can adopt a mixed approach, node-centered at
the infected node but modulated by the activity of edges. We call this
approach ‘‘Rule 3’’ (R3). In this case, we set the onset of the infection
at the time the infected node makes contact to its neighbors, regardless
of their state. So R3 depends both on the state of the infected node
itself as well as on the state of its edges. Fig. 1 shows also the onset of
the infection for rules R2 and R3 in the different cases. Other types of
approaches can induce an effective complex contagion and the split of
the epidemic phase transition into new intermediate phases [45].
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Fig. 1. Three possible ways to generate a new AIE. Red and white circles represent infected and susceptible nodes, respectively, whereas solid and dashed lines indicate active
and dormant edges, respectively. We also show how to define the onset of the infection from A to B for the three rules used in this paper. Rule 1 sets this time always to zero.
Rule 2 assigns to the newborn AIE the infected dwell time of node A. In Rule 3, the onset of the infection is set as the minimum between the infected dwell time of node A and
the active dwell time of the edge connecting nodes A and B.
3. Non-Markovian mean-field approach

Here, we extend the mean field approximation developed in Ref.
[26] for static networks to the case of the temporal networks described
in the previous section. Due to the non-Markovian dynamics, to de-
scribe the temporal evolution of the epidemic we have to keep track
of the dwell time of nodes in each state, infected or susceptible. We
then define 𝐼𝑖(𝜏; 𝑡)𝑑𝜏 as the probability to find node 𝑖 infected at time
𝑡 and that, simultaneously, the time since it became infected is within
the interval (𝜏, 𝜏 + 𝑑𝜏). Similarly, we define 𝑆𝑖(𝜏; 𝑡) as the probability
to find node 𝑖 susceptible at time 𝑡 and that, simultaneously, the time
since it became susceptible is within the interval (𝜏, 𝜏+𝑑𝜏). Notice that
functions 𝐼𝑖(𝜏; 𝑡) and 𝑆𝑖(𝜏; 𝑡) are probability densities with respect to
the variable 𝜏 but not 𝑡, so that the prevalence of node 𝑖 at time 𝑡, 𝜌𝑖(𝑡),
defined as the probability to find node 𝑖 infected at time 𝑡 > 0 is

𝜌𝑖(𝑡) = ∫

𝑡

0
𝐼𝑖(𝜏; 𝑡)𝑑𝜏, (5)

and the global prevalence 𝜌(𝑡) = 𝑁−1 ∑𝑁
𝑖=1 𝜌𝑖(𝑡). Hereafter, as initial

conditions, we assume that node 𝑖 is infected at time 𝑡 = 0 with
probability 𝜌𝑖(𝑡 = 0) = 𝜌𝑖,0.

Assuming that the infections from different edges are statistically
independent events and working at the mean field level, in Ref. [26] it
was shown that functions 𝐼𝑖(𝜏; 𝑡) and 𝑆𝑖(𝜏; 𝑡) satisfy the partial differen-
tial equations
( 𝜕
𝜕𝜏

+ 𝜕
𝜕𝑡

)

𝐼𝑖(𝜏; 𝑡) = −𝜔rec(𝜏)𝐼𝑖(𝜏; 𝑡) (6)

and
( 𝜕
𝜕𝜏

+ 𝜕
𝜕𝑡

)

𝑆𝑖(𝜏; 𝑡) = −
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝜙𝑖←𝑗 (𝜏; 𝑡)𝑆𝑖(𝜏; 𝑡) (7)

where 𝜙𝑖←𝑗 (𝜏; 𝑡) is the instantaneous infection rate from node 𝑗 to 𝑖,
which depend on the specific rule used and the on–off dynamics on the
edges. Eqs. (6) and (7) are supplemented by the boundary conditions

𝑆𝑖(0; 𝑡 + 𝑑𝜏) = ∫

𝑡

0
𝜔rec(𝜏)𝐼𝑖(𝜏; 𝑡)𝑑𝜏 (8)

and

𝐼𝑖(0; 𝑡 + 𝑑𝜏) =
𝑁
∑

𝑗=1
𝑎𝑖𝑗 ∫

𝑡

0
𝑆𝑖(𝜏; 𝑡)𝜙𝑖←𝑗 (𝜏; 𝑡)𝑑𝜏, (9)

Notice that these boundary conditions are slightly different from the
ones in Ref. [26] because we consider that dwell times are bounded in
the interval 𝜏 ∈ (0, 𝑡).

Finally, to close these equations, we need to find an expression for
the instantaneous infection rate from node 𝑗 to susceptible node 𝑖 (with
3

susceptible dwell time 𝜏) at time 𝑡, 𝜙𝑖←𝑗 (𝜏; 𝑡). This rate depends on the
particular rule used to determine the onset of the infection event. For
R1, this time is the smallest between the susceptible dwell time of node
𝑖, the infected dwell time of node 𝑗, and the active dwell time of the
edge connecting nodes 𝑖 and 𝑗. Thus, we can write

𝜙R1
𝑖←𝑗 (𝜏; 𝑡) = 𝑃on ∫

∞

0
𝑑𝜏′

𝛷on(𝜏′)
⟨𝜏on⟩ ∫

𝑡

0
𝑑𝜏′′𝐼𝑗 (𝜏′′; 𝑡)𝜔inf

(

min (𝜏, 𝜏′, 𝜏′′)
)

(10)

For R2, the onset of the infection event is determined by the dwell time
in the infected state of node 𝑗 at time 𝑡. Therefore, we write

𝜙R2
𝑖←𝑗 (𝜏; 𝑡) = 𝜙R2

𝑖←𝑗 (𝑡) = 𝑃on ∫

𝑡

0
𝑑𝜏′′𝐼𝑗 (𝜏′′; 𝑡)𝜔inf

(

𝜏′′
)

. (11)

For R3, this time is the smaller between the infected dwell time of node
𝑗, and the active dwell time of the edge connecting nodes 𝑖 and 𝑗. Thus,
we have

𝜙R3
𝑖←𝑗 (𝜏; 𝑡) = 𝜙R3

𝑖←𝑗 (𝑡) = 𝑃on ∫

∞

0
𝑑𝜏′

𝛷on(𝜏′)
⟨𝜏on⟩ ∫

𝑡

0
𝑑𝜏′′𝐼𝑗 (𝜏′′; 𝑡)𝜔inf

(

min (𝜏′, 𝜏′′)
)

(12)

The set of equations Eqs. (5)- (12) form a closed set of equations that
enable to find the temporal evolution of the prevalence 𝜌𝑖(𝑡) at the
mean field level, as shown in Fig. 2. From this analysis, we already
conclude that the only influence of the off-distribution 𝜑off(𝜏) on the
SIS dynamics is through its average value, which affect the probability
to find an edge in the on-state 𝑃on.

It is illustrative to see how this formalism recovers the Markovian
SIS model at the mean field level for static networks. In that case,
𝜔rec(𝜏) = 𝛿, 𝜔inf(𝜏) = 𝜆 and 𝑃on = 1. Integrating Eq. (6) with respect
to 𝜏 ∈ (0, 𝑡) leads to the differential equation

𝑑𝜌𝑖(𝑡)
𝑑𝑡

= −𝛿𝜌𝑖(𝑡) + 𝐼𝑖(0; 𝑡) = −𝛿𝜌𝑖(𝑡) +
𝑁
∑

𝑗=1
𝑎𝑖𝑗 ∫

𝑡

0
𝑆𝑖(𝜏; 𝑡)𝜙𝑖←𝑗 (𝜏; 𝑡)𝑑𝜏 (13)

In the Markovian case, the instantaneous infection rate from node 𝑗 to
𝑖 is independent of the rule used and takes the simple form

𝜙R1
𝑖←𝑗 (𝜏; 𝑡) = 𝜙R2

𝑖←𝑗 (𝜏; 𝑡) = 𝜙R3
𝑖←𝑗 (𝜏; 𝑡) = 𝜆𝜌𝑗 (𝑡). (14)

Using this result in Eq. (13) we obtain

𝑑𝜌𝑖(𝑡)
𝑑𝑡

= −𝛿𝜌𝑖(𝑡) + 𝜆
𝑁
∑

𝑎𝑖𝑗 [1 − 𝜌𝑖(𝑡)]𝜌𝑗 (𝑡), (15)

𝑗=1
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Fig. 2. Comparison between simulation and theoretical results of the temporal evolution of the density of infected nodes 𝜌(𝑡) on a random-regular network with 𝑁 = 10000 and
𝑘⟩ = 10 for rules R1 (a), R2 (b), and R3 (c). Red circles, green circles, and blue circles represent the simulation results for 𝛼inf = 0.5, 1, and 1.5, respectively and solid lines are
heoretical results. Other parameters are ⟨𝜏off⟩ = ⟨𝜏on⟩ = 1, 𝛼off = 𝛼on = 5, 𝑢 = 0.5 and 𝛿 = 1.
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hich is the mean field approximation of the SIS model developed in
ef. [46]. At the steady state, the prevalence satisfy

st
𝑖 = 𝜆𝑀eff

𝑁
∑

𝑗=1
𝑎𝑖𝑗 [1 − 𝜌st

𝑖 ]𝜌
st
𝑗 . (16)

ith 𝜆𝑀eff = 𝜆∕𝛿. In this approximation, the critical epidemic threshold
s controlled by the largest eigenvalue of the adjacency matrix 𝛬max
o that 𝜆𝑀eff > 𝛬−1

max leads to an endemic phase where a finite fraction
f the population is infected, whereas 𝜆𝑀eff < 𝛬−1

max corresponds to a
isease-free phase.

.1. The steady state solution

At the steady state, functions 𝐼𝑖(𝜏; 𝑡), 𝑆𝑖(𝜏; 𝑡), and 𝜙𝑖←𝑗 (𝜏; 𝑡) become
ndependent of 𝑡 and we can find the following explicit expressions from
qs. (6) and (7)

st
𝑖 (𝜏) =

𝜌st
𝑖

⟨𝜏rec⟩
𝛷rec(𝜏) and 𝑆st

𝑖 (𝜏) =
𝜌st
𝑖

⟨𝜏rec⟩
exp

(

−
∑

𝑗
𝑎𝑖𝑗 ∫

𝜏

0
𝜙st
𝑖←𝑗 (𝜏

′)𝑑𝜏′
)

.

(17)

ntegrating the last equation we obtain

− 𝜌st
𝑖 =

𝜌st
𝑖

⟨𝜏rec⟩ ∫

∞

0
exp

(

−
∑

𝑗
𝑎𝑖𝑗 ∫

𝜏

0
𝜙st
𝑖←𝑗 (𝜏

′)𝑑𝜏′
)

𝑑𝜏. (18)

Notice that combining the expression for 𝐼 st
𝑖 (𝜏) in Eq. (17) and the

general expression for 𝜙𝑖←𝑗 (𝜏; 𝑡), we can write that, at the steady state,

𝜙st
𝑖←𝑗 (𝜏) =

𝜌st
𝑗 𝑃on
⟨𝜏rec⟩

𝑓 (𝜏), where 𝑓 (𝜏) is a function that depends on the
particular rule used but does not depend on the states of nodes 𝑖 and
𝑗. Thus, Eqs. (18) form set of closed equations for 𝜌st

𝑖 ∀𝑖 = 1,… , 𝑁 .
To go further, we need to specify the particular rule used. In the

case of R2, function 𝑓 (𝜏) is independent of 𝜏, taking the value

𝑓 (𝜏) = ∫

∞

0
𝑑𝜏′′𝛷rec(𝜏′′)𝜔inf(𝜏′′). (19)

Using this result, Eq. (18) reduces to

𝜌st
𝑖 = 𝜆𝑅2eff

𝑁
∑

𝑗=1
𝑎𝑖𝑗 [1 − 𝜌st

𝑖 ]𝜌
st
𝑗 , (20)

with

𝜆𝑅2eff = 𝑃on ∫

∞

0
𝛷rec(𝜏)

𝜑inf(𝜏)
𝛷inf(𝜏)

𝑑𝜏. (21)

Eq. (20) is identical to the mean field steady state of the non-Markovian
SIS model in Eq. (16) but with an effective infection rate given by
𝜆𝑅2eff so that, at the steady state, we can replace a non-Markovian SIS
epidemic process on a temporal network by a Markovian one on a static
network. It is also interesting to notice that, for rule R2, the effect of the
temporal nature of the network has only a minor effect on the dynamics
through the probability 𝑃on. However, the particular details of the on–
off dynamics are very relevant to determine the time needed to reach
4

the steady state, or the time window one must observe the system to
make sure that the steady state is sufficiently sampled.

In the case of R3, function 𝑓 (𝜏) is also independent of 𝜏 and takes
he form

(𝜏) = ∫

∞

0
𝑑𝜏′

𝛷on(𝜏′)
⟨𝜏on⟩ ∫

∞

0
𝑑𝜏′′𝛷rec(𝜏′′)𝜔inf

(

min (𝜏′, 𝜏′′)
)

, (22)

o that Eq. (18) reduces to

st
𝑖 = 𝜆𝑅3eff

𝑁
∑

𝑗=1
𝑎𝑖𝑗 [1 − 𝜌st

𝑖 ]𝜌
st
𝑗 , (23)

ith

𝑅3
eff = 𝑃on ∫

∞

0

𝛷on(𝜏′)
⟨𝜏on⟩

𝑑𝜏′ ∫

∞

0
𝛷rec(𝜏′′)𝜔inf(min(𝜏′, 𝜏′′))𝑑𝜏′′. (24)

s in the previous case, the steady state of the non-Markovian SIS
ynamics under R3 can be reduced to the Markovian case with the
ffective infection rate 𝜆𝑅3eff . Unlike R2, here the on–off dynamics of
dges plays a more relevant role because the distribution of dwell times
f edged in the on state has a strong influence on the definition of the
ffective rate 𝜆𝑅3eff .

In the case of rule R1, function 𝑓 (𝜏) is not constant and it is
not possible to reduce the steady state to the non-Markovian case.
Besides, in this case, the assumption about the independence between
different infectious channels does not hold. We can understand this
phenomenon with a simple example: consider an infected node A with
three infected neighbors B, C, and D, connected by active edges. If
node A recovers, then the infections from nodes B, C, and D to now
susceptible node A will start simultaneously and, therefore, become
strongly correlated. However, it is still possible to find an effective
infection rate that becomes exact near the phase transition. Indeed, in
this case the density of infected nodes is very low and the number of
infected neighbors is small so that the correlations between different
edges become irrelevant. We can then use the formalism in Ref. [24],
where the effective infection rate from node 𝑗 to 𝑖 is defined as

𝜆eff = 𝑃on⟨𝜏rec⟩⟨𝜔inf(𝜏)|node 𝑖 susceptible, 𝑗 infected, edge 𝑖𝑗 active⟩,
(25)

here 𝜏 is the time since the infection process started given that node
is susceptible, 𝑗 infected, and the edge between them active. For rule
1 at the steady state, the only information about this time is that it
ust be shorter than the time 𝑗 takes to infect 𝑖, also shorter than the

ime 𝑗 takes to recover, and shorter than the time edge 𝑖𝑗 remains in
he active state. Therefore, the pdf of this time is given by

(𝜏|node 𝑖 susceptible, 𝑗 infected, edge 𝑖𝑗 active)

=
𝛷inf(𝜏)𝛷rec(𝜏)𝛷on(𝜏)

∫ ∞
0 𝛷inf(𝜏)𝛷rec(𝜏)𝛷on(𝜏)𝑑𝜏

(26)

nd the effective infection rate for rule R1 becomes

𝑅1
eff = 𝑃on⟨𝜏rec⟩

∫ ∞
0 𝜑inf(𝜏)𝛷rec(𝜏)𝛷on(𝜏)𝑑𝜏
∞ . (27)
∫0 𝛷inf(𝜏)𝛷rec(𝜏)𝛷on(𝜏)𝑑𝜏
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Fig. 3. Steady-state prevalence 𝜌st under rule R1 as a function of 𝜆𝑅1eff in Eq. (27) for different values of the parameters 𝛼inf, 𝛼off and 𝛼on. Panels (a), (b), and (c) show results for
Erdős-Rényi networks with ⟨𝑘⟩ = 10 and size 𝑁 = 10000. Panels (d), (e), and (f) show results of Barabási–Albert networks with 𝑁 = 10000. In panels (a) and (d) we fix 𝛼off = 5,

on = 5 and change 𝛼inf. In panels (b) and (e) we fix 𝛼inf = 0.5, 𝛼on = 5 and change 𝛼off. Finally, in panels (c) and (f) we fix 𝛼inf = 0.5, 𝛼off = 5 and change 𝛼on. In all cases, we set
⟨𝜏off⟩ = ⟨𝜏on⟩ = 1, and 𝛿 = 1. Black empty diamonds correspond to the Markovian SIS dynamic on the static version of the network with the infection rate 𝜆𝑅1eff .
c
m
i

n
d
a
a
c
S
H
z
a
e
t
b
b
i

We then expect that near the critical point, the behavior of the non-
Markovian SIS on a temporal network is equivalent to the Markovian
SIS on a static network with the effective infection rate 𝜆𝑅1eff . Then, we
can use the expression in Eq. (27) to find the exact position of the
critical point in terms of the critical point of the Markovian SIS on the
static version of the network 𝜆𝑀eff,c. Once this value is known, then the
pidemic threshold in our model with any rule is given by
𝑅1
eff,c = 𝜆𝑅2eff,c = 𝜆𝑅3eff,c = 𝜆𝑀eff,c. (28)

s explained above, under the mean field approximation 𝜆𝑀eff,c = 𝛬−1
max,

so that a good approximation for the epidemic threshold in the non-
Markovian case with dynamic edges is given by

𝜆𝑅1eff,c = 𝜆𝑅2eff,c = 𝜆𝑅3eff,c = 𝛬−1
max. (29)

4. Simulation results

We check the validity of the theory developed in the previous sec-
tion by means of extensive numerical simulations of the non-Markovian
SIS dynamics on temporal networks. As suggested by empirical obser-
vations, we consider both the dormant and active times of edges to be
power law distributed. Specifically, we use the Lomax distribution [47]
as

𝜑(𝜏) =
𝛼𝜉𝛼

(𝜏 + 𝜉)(1+𝛼)
, (30)

ith exponent 𝛼 > 1 and 𝜉 = (𝛼 − 1)⟨𝜏⟩. Infections are modeled with a
eibull distribution with shape parameter 𝛼inf and scale parameter 𝑢.

inf(𝜏) = 𝛼inf𝑢
𝛼inf𝜏𝛼inf−1𝑒−(𝑢𝜏)

𝛼inf . (31)

his is a useful choice that interpolates between a strongly picked
istribution when 𝛼inf > 1 to a long tailed distribution when 𝛼inf < 1,
ecovering the Markovian case when 𝛼inf = 1. Finally, we consider a
arkovian recovery process with rate 𝛿, 𝜑rec(𝜏) = 𝛿𝑒−𝛿𝜏 .

We first check the ability of our formalism to describe the short
erm temporal evolution of the dynamics. Specifically, we perform
umerical simulations initially infecting 10% of nodes in the network.
ig. 2 shows results from numerical simulations for the three rules
ompared to the numerical solution of Eqs. (5)- (12). As it can be
bserved, the non-Markovian mean field approach agrees very well
ith numerical simulations. In particular, it is able to predict the
5

haracteristic time scale to reach the steady state and a non trivial non-
onotonous behavior when the probability density of infection times

s picked around it average (so that 𝛼inf > 1).
Next, we study the steady state of the dynamics and compare

umerical simulations with different values of the parameters of the SIS
ynamics and the temporal network. Fig. 3 shows the steady prevalence
s a function of the effective infection rate for rule R1, 𝜆𝑅1eff . As discussed
bove, the prevalence for different values of the parameters do not
ollapse into a single curve, which indicates that the non-Markovian
IS model cannot be reduced to the Markovian case under rule R1.
owever, all curves do collapse nicely when the prevalence approaches
ero. This means that, as predicted, the effective infection rate 𝜆𝑅1eff is
ble to recover the exact value of the epidemic threshold in terms of the
pidemic threshold of the Markovian dynamics on the static version of
he network. The situation is different in the case of rules R2 and R3. In
oth cases, our theory predicts that the non-Markovian dynamics can
e reduced to the Markovian one on a static network with effective
nfection rates 𝜆𝑅2eff and 𝜆𝑅3eff . Figs. 4 and 5 show numerical simulations

for rules R2 and R3 where the collapse of the different prevalence
curves is evident, thus corroborating our predictions.

Finally, we compare the effective infection rates from Eqs. (27),
(21), and (24) with the effective rate of the Markovian SIS dynamics
on static networks with the same average infection time which, in the
case 𝛿 = 1, is given by 𝜆𝑀eff = ⟨𝜏inf⟩

−1. From Fig. 6, we observe that
for rule R1, the non-Markovian effective rate is always larger than the
Markovian one for 𝛼inf < 1 and smaller when 𝛼inf > 1, which happens
for any value of the 𝜆𝑀eff. The situation is different for rules R2 and
R3, for which we observe a non-monotonic behavior as a function of
𝜆𝑀eff. Interestingly, for 𝛼inf < 1, the non-Markovian rates are higher than
the Markovian ones when 𝜆𝑀eff < 1 (so for infection times longer than
recovery times) and become smaller when 𝜆𝑀eff > 1. The opposite trend
is found for 𝛼inf > 1. These results, again, make evident the highly non-
trivial interplay between spreading phenomena and non-Markovian
interaction rules.

5. Conclusion and discussion

Empirical evidence demonstrates that non-Markovian dynamics and
temporal networks are prevalent in real complex systems. However,
these properties, particularly those associated with memory effects, are

frequently overlooked in scientific literature. This is partially due to the
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Fig. 4. Steady-state prevalence 𝜌st under rule R2 as a function of 𝜆𝑅2eff in Eq. (21)) for different values of the parameters 𝛼inf, 𝛼off and 𝛼on. Panels (a), (b), and (c) show results for
Erdős-Rényi networks with ⟨𝑘⟩ = 10 and size 𝑁 = 10000. Panels (d), (e), and (f) show results of Barabási–Albert networks with 𝑁 = 10000. In panels (a) and (d) we fix 𝛼off = 5,
𝛼on = 5 and change 𝛼inf. In panels (b) and (e) we fix 𝛼inf = 0.5, 𝛼on = 5 and change 𝛼off. Finally, in panels (c) and (f) we fix 𝛼inf = 0.5, 𝛼off = 5 and change 𝛼on. In all cases, we set
⟨𝜏off⟩ = ⟨𝜏on⟩ = 1, and 𝛿 = 1. Black empty diamonds correspond to the Markovian SIS dynamic on the static version of the network with the infection rate 𝜆𝑅2eff .

Fig. 5. Steady-state prevalence 𝜌st under rule R3 as a function of 𝜆𝑅3eff in Eq. (24) for different values of the parameters 𝛼inf, 𝛼off and 𝛼on. Panels (a), (b), and (c) show results for
Erdős-Rényi networks with ⟨𝑘⟩ = 10 and size 𝑁 = 10000. Panels (d), (e), and (f) show results of Barabási–Albert networks with 𝑁 = 10000. In panels (a) and (d) we fix 𝛼off = 5,
𝛼on = 5 and change 𝛼inf. In panels (b) and (e) we fix 𝛼inf = 0.5, 𝛼on = 5 and change 𝛼off. Finally, in panels (c) and (f) we fix 𝛼inf = 0.5, 𝛼off = 5 and change 𝛼on. In all cases, we set
⟨𝜏off⟩ = ⟨𝜏on⟩ = 1, and 𝛿 = 1. Black empty diamonds correspond to the Markovian SIS dynamic on the static version of the network with the infection rate 𝜆𝑅3eff .

Fig. 6. The effective infection rates from Eqs. (27), (21), and (24) as a function of the infection rate of the Markovian case in static networks with the same average infection
time ⟨𝜏inf⟩ and 𝛿 = 1, given by 𝜆𝑀eff = ⟨𝜏inf⟩

−1. Other parameters are ⟨𝜏off⟩ = ⟨𝜏on⟩ = 1, 𝛼off = 𝛼on = 5, 𝑃on = 0.5, and 𝛿 = 1.
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analytical and computational challenges that these properties entail,
but the major obstacle when dealing with non-Markovian dynamics
is our lack of knowledge about how memory is implemented. In this
study, we explored three different possibilities, but numerous other
possibilities exist, and it is challenging to determine which ones apply
to actual systems. This has significant consequences because, as our
work has shown, the specifics of the rule utilized dictate the fate of
the dynamics. We have demonstrated that some of these rules are
‘‘simple’’ in that an effective parameter can encode the non-Markovian
and temporal properties of the dynamics. However, in other cases, this
is only possible near the critical point, allowing us to recover the critical
threshold of the dynamics. In light of these findings, it is uncertain
whether the concept of universality class can be extended to general
non-Markovian dynamics.
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