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We present a model of integrate and fire oscillators that move on a plane. The phase of the
oscillators evolves linearly in time and when it reaches a threshold value they fire choosing their
neighbors according to a certain interaction range. Depending on the velocity of the ballistic
motion and the average number of neighbors each oscillator fires to, we identify different regimes
shown in a phase diagram. We characterize these regimes by means of novel parameters as the
accumulated number of contacted neighbors.
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1. Introduction

Among the many emerging phenomena we observe
in nature, synchronization is one of the most
paradigmatic examples. It can be roughly under-
stood as the collective dynamics of units whose
internal state evolves periodically in time and when
they interact tend to synchronize their internal vari-
ables [Pikovsky et al., 2001]. The achievement of the
final synchronized state (if any) strongly depends
on the interaction pattern of the system [Boccaletti
et al., 2006; Arenas et al., 2008]. Up to now, syn-
chronization has been mainly analyzed in fixed
topologies but we are witnessing the first evidences

that links between agents can evolve in time [Olfati-
Saber et al., 2007; Onnela et al., 2007; Valencia
et al., 2008]. The case in which this evolution of the
network topology is an effect of the agents mobility
is a particularly interesting case [Buscarino et al.,
2006; Tanner et al., 2003; Buhl et al., 2006]. The
effect of this changing patterns of interaction on
synchronization features has been analyzed in dif-
ferent settings, for instance, in chemotaxis [Tanaka,
2007], mobile ad hoc networks [Römer, 2001], wire-
less sensor networks [Sivrikaya & Yener, 2004], and
the expression of segmentation clock genes [Uriu
et al., 2010].
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In recent literature, studies on synchroniza-
tion in dynamically evolving complex networks have
mainly concentrated on the case when the topol-
ogy changes very fast. This is the so-called fast-
switching approximation (FSA) [Belykh et al., 2004;
Frasca et al., 2008; Porfiri et al., 2006; Stilwell et al.,
2006], which replaces the real interaction between
agents by the “mean field assumption” that all
agents interact with an effective strength that cor-
responds to the probability that any pair of agents
are connected.

Recently, a general framework of mobile oscil-
lator networks has been proposed where agents
perform random walks in a two-dimensional (2D)
plane [Fujiwara et al., 2011b]. It has been shown
that FSA fails when the time scale of local syn-
chronization is shorter than the time scale of the
topology change due to the agent motion. New
behaviors arise due to the interplay between instan-
taneous network topology, agent motion and inter-
action rules. This framework, that reduces to FSA
when velocity is high enough, is valid for models
whose evolution can be well approximated by lin-
ear dynamics. This actually holds for models such
as populations of Kuramoto oscillators [Kuramoto,
1984; Acebrón et al., 2005], whose evolution, after
a short transient time, is very well described by
a set of linear equations that can be solved in
terms of spectral properties of the Laplacian matrix
[Fujiwara et al., 2011a].

In the present paper, we focus on a dynam-
ical system, a population of Integrate and Fire
Oscillators (IFO), where linearization is not a good
approximation, since the evolution takes place in
two different time scales. One for the slow evolu-
tion of the internal state variables (the phase and
the orientation) and the other for the fast interac-
tion between the units (pulse coupling). During the
last years, it has been shown that the interaction
structure plays a fundamental role in the dynam-
ics of IFO networks. Zillmer et al. [2009] observed
different dynamical regimes due to network connec-
tivity in a system formed by inhibitory integrate-
and-fire neurons that were randomly connected.
Also, the underlying network structure can affect
the speed with which the system reaches the syn-
chronized state, as studied by Grabow et al. [2011].
Usually, IFO have been used to model neural sys-
tems but we can also find some examples of appli-
cations in other fields, as for example, in economy
[Erola et al., 2011]. Models where the oscillators

do not remain fixed, and the network of interac-
tions changes with time can find a direct application
in biological systems such as flashing fireflies, that
interchange light signals while searching for poten-
tial mates [Mirollo & Strogatz, 1990; Ramirez-Avila
et al., 2011].

In the present case, we will show that
the interplay between agents motion and phase
evolution towards a synchronized state presents
different asymptotic behaviors, reminiscent of the
observation in Kuramoto oscillators [Fujiwara et al.,
2011b] and agents using communication protocols
[Baronchelli & D́ıaz-Guilera, 2011]. We identify, fur-
thermore, the possible mechanisms in the different
regions of the parameter space.

The organization of the paper is as follows. In
the next section, we introduce the model. Then,
we show the results for different regions of the
parameter space, velocity of the agents and range
of interaction, and later we identify the different
microscopic mechanisms that lead the system to a
globally synchronized state.

2. The Model

We propose a setting in which a population of N
IFOS [Mirollo & Strogatz, 1990] move at a con-
stant velocity V in a bidimensional plane of size L
with periodic boundary conditions. Each agent has
two degrees of freedom corresponding to an internal
phase φ ∈ [0, 1] and orientation θi ∈ [0, 2π], both
randomly set in an uniform manner at the initial
configuration.

The evolution of the system takes place on two
different time scales. The slow time scale sets the
pace at which the phases of the agents increase
uniformly with period τ ,

dφi

dt
=

1
τ

(1)

until they reach a maximum value of 1, when a fir-
ing event occurs. Then the phase is reset and the
oscillator is randomly reoriented. Upon this event
at time t, the firing oscillator influences its nearest
neighbors (oscillators at minimal distance) produc-
ing an update in their phases by a factor ε:

φi(t−) = 1 ⇒




φi(t+) = 0,

φnn(t+) = (1 + ε)φnn(t−),

θi(t+) ∈ [0, 2π].

(2)
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The phase and orientation resetting corresponds
then to the fast time scale. If the neighbor’s phase
update overcomes the phase maximum, another fir-
ing event is triggered and this process goes on
repeatedly until all shots have ceased. At this
point, the time t runs again until the next firing
event occurs. The system is synchronized when we
encounter in the system a succession of consecutive
firing events (avalanche) equal to the system size
N , since after this fact, all oscillators will remain
synchronized forever because all of them will have
the same period τ with or without interactions. For
the sake of clarity we define the (discrete) time T ,
as the number of times a given oscillator (that we
will identify with oscillator 1 in our computer sim-
ulations) has fired. This allows us to define Tsync as
the minimum number of (integer) cycles this refer-
ence oscillator takes to enter the synchronized state
(i.e. the number of updates needed for an avalanche
of size N to occur).

We propose a geometric condition for neighbor
selection upon a firing event as shown in Fig. 1:
Every agent scans a circular area of radius R around
it and shoots the neighbors therein. We introduce
a parameter r ∈ [0, 1] that indicates the fraction of
the system available for interaction and relates both
R, L variables and the average outgoing degree of
the nodes of our evolving network

r =
πR2

L2
〈kout〉 = (N − 1)r. (3)

Fig. 1. The model of interaction between oscillators, based
on geometrical constraints. Only those within a distance R
are affected by the firing of the central one.

Throughout this paper, we have used fixed param-
eters L = 100, τ = 1, N = 50 and ε = 0.02 ∼
O(1/N), while analyzing the explicit dependence on
the mobility parameters, r and V .

Before proceeding to show the results of our
simulations, we need to note that the type of pro-
posed interaction range in this system has been
reported to show statistical properties similar to a
continuous percolation [Fujiwara et al., 2011b], that
in the case of static oscillators occurs for approxi-
mately rc ≈ 4.51/(N − 1) = 0.09 [Dall & Chris-
tensen, 2002; Balister et al., 2005]. In our range of
study, we hope to observe some traces of this per-
colation as well as saturation properties observed
in other moving oscillator systems at high speeds
[Fujiwara et al., 2011b].

It is also important to notice that we have kept
the dynamical evolution of the units at its maxi-
mal simplicity since we are mostly interested in the
interplay between motion (and hence construction
of a dynamical network) and internal dynamics and
how synchronization emerges as a collective prop-
erty of the system.

3. Results

We present in Fig. 2 the results of our simulations.
A preliminary observation points out that the roles
and importance of V and r change throughout our
map.

For high enough values of r (r � rc) , the syn-
chronization time, Tsync, is almost unaffected by the
values of speed V . Although this time is dependent
on r, its range of possible values is much narrower
(by orders of magnitude) than below the value, rc,
that characterizes the static percolation transition.
Actually, below this critical value the velocity plays
the crucial role since for a fixed value of r the syn-
chronization time changes by a factor of 104.

To bring further insight to the map, we show a
profile of the efficiency of the system rTsync depen-
dence on r for various velocities. This efficiency vari-
able balances the range of interactions (which has
an “energy cost” related with the number of shots
to different neighbors and their strength) and the
number of shots that the system needs to synchro-
nize (related with Tsync).

It seems clear that mobility of agents helps to
minimize energy consumption but as we approach
the critical percolating value of rc, we observe that a
range of behaviors emerge. On one hand, we observe
for high velocities that the efficiency of the process
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Fig. 2. (Left) Heat map of the synchronization time as a function of r and V ; in the top picture a large region of the param-
eters space has been considered, while the bottom figure is a zoom on the most critical region (r < 0.08, V < 0.25). (Right)
Profiles of the efficiency of system rTsync against r, for several values of V .

remains roughly constant independently of r, since
the extreme mobility of the agents compensates the
reduced range of its interactions and successfully
diffuses the synchronization process around the sys-
tem, a process that is equivalent to the observation
in other settings [Frasca et al., 2008; Fujiwara et al.,
2011b; Baronchelli & D́ıaz-Guilera, 2011]. On the
other hand, if the mobility of the agents is reduced,
then the path to synchronization is more lengthly
as well as more energy consuming. Synchronization
is still possible (below the percolation static limit
rc) but the time to achieve it grows very fast, even
resulting in an effectively infinite time.1

These results lead us to identify different
regimes and the consequent transitions between
them. On the one hand, we find a “topological”
transition at the critical static value rc, since above
it there is basically no velocity dependence whereas
below rc the influence of V is determinant. On
the other hand, below rc, where synchronization is
made possible by the mobility of the agents, we can
identify a transition (depending on both r and V )
that separates two dynamical regimes.

4. Mechanisms

Up to this point, we have studied the efficiency of
our system and detected several regimes strongly
dependent on two factors, the mobility of our agents
and its range of interaction.

In this part of the paper, we want to study the
distinct mechanisms that the system uses in its path
to synchronization. To this end, we introduce an
order parameter η(T ) = 〈cos (2πφ(T ))〉 that is an
increasing function that measures the overall syn-
chrony of our system, ranging from a uniform phase
distribution of our oscillators (η(T ) = 0) to com-
plete synchronization2 (η(T ) = 1).

To couple our V and r control parameters we
also introduce the number of distinct interactions
per oscillator N i

c (accumulated encounters with
different agents by an oscillator i). This value is
bounded (on average) between a minimal starting
value of 〈Nc〉0 = (r − 1)N and a maximal value
of 〈Nc〉max = N − 1 and it provides information
about the evolution of our system’s synchroniz-
ing mechanism. Since the bounding of this value

1In our simulations some realizations of the experiment did not reach synchronization, even working with a reduced number
of oscillators and the described boundary conditions, a fact that induces us to think in this direction.
2Note that the average is calculated upon a firing event by the reference oscillator, hence our order parameter is an average
of the phase difference of the other oscillators with respect to this one.
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depends on r, we introduce a normalized magni-
tude χ,

χ(T ) =
〈Nc〉(T ) − 〈Nc〉0
〈Nc〉max − 〈Nc〉0 〈Nc〉 =

1
N

N∑
i=1

N i
c, (4)

that is a quantification of the mixing of our system.
When the mixing is minimal (〈Nc〉 = 〈Nc〉0) χ is 0.
As the system mixes, i.e. the oscillators increase its
average number of contacted neighbors, it can grow
up to its maximum value χ = 1, i.e. 〈Nc〉 = 〈Nc〉max.

We have calculated the time evolution of both
η and χ for different values of V ∈ {0.1, 1, 100}
and r ∈ {0.05, 0.1, 0.2}. In Fig. 3 one can see the
evolution of both parameters measured at the same
time instants (and sufficiently averaged over enough
realizations) together with the difference between
them over time η(T )−χ(T ) that give insight about
the topological evolution of our system as it syn-
chronizes. The figures show three clearly distinct
patterns.

For high velocities we observe in Fig. 3(a)
a gradual increase of the order parameter and a
minor influence on r at fixed V , indicating that
the synchronization emerges evenly on the system
in a global fashion, due to the quickly changing

topology of the network (neighbors of a given oscil-
lator change rapidly). This regime (which we call
diffusive) requires the inter-contact of the major-
ity of the system, but this circumstance is rapidly
achieved due to the strong mobility of the agents.
In fact, this regime is optimal as far as the synchro-
nization time is concerned, since the interactions
are more effective. These conclusions were obtained
for populations of Kuramoto oscillators [Fujiwara
et al., 2011b], for which this regime corresponds to
the region of validity of the FSA.

In the opposing case, when velocities are small
enough, this behavior is completely lost and a step
function appears, indicating that the slow mobil-
ity of the agents allows them to synchronize locally
with their neighbors creating islands of synchrony.
The sudden increase of the order parameter occurs
at a regular pace, a fact that points out that when-
ever the islands are disbanded (change of neigh-
bors), they still transmit the local synchrony to the
neighboring groups, mechanism that allows for sys-
tem synchrony while keeping χ in small values. The
initial height of the steps is dependent on r and
decreasing as χ(T ) grows due to the limited range
of η(T ) available states.

Finally, as we decrease r approaching the crit-
ical value rc, we observe a transition from a local

Fig. 3. (a) η against χ for several values of r and V . (b) The difference between the two control parameters (η − χ) as a
function of rT . Letters [D], [L] and [B] stand respectively for “diffusive”, “local” and “bounded” regimes. The values of η and
χ at each time instant have been calculated averaging over 1000 realizations.
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to a bounded regime, where the synchronizing time
is so long that again it allows for the interaction of
the majority of the agents among themselves upon
synchronization time (due to the bounded nature of
the system). In this regime, the range of interaction
is very reduced, and so is the size of the clusters, so
an agreement between the multiple clusters created
(if any) comes after almost the entire system has
interacted. Consequently, the increasing of η with
χ is slower [many small steps, see Fig. 3(a)] while
the final value χ becomes larger (Fig. 3).

In Fig. 3(b) we provide an explicit time evo-
lution of the difference η(T ) − χ(T ) in order to
make the three regimes and the influence of r better
identified.

It is interesting to study the final mixing of our
system upon synchronization as shown in Fig. 4.
This value χ(T = Tsync) ≡ χsync together with Tsync

characterize the evolution of the system towards the
synchronized final state. These features depend on
both r and V . At fixed velocity the final mixing
of the system decreases as the interaction range
grows. This is caused by the fact that although
an increased r induces more mixing (as oscillators
find new neighbors more easily) it also drasti-
cally reduces (below the critical values rc) the

synchronizing time Tsync thus reducing the chances
of encounters between different oscillators. Above rc

we observe a saturation of the values as the depen-
dence of Tsync in r and V is practically lost.

Figure 4(b) shows a change between the rela-
tion pattern of χsync and efficiency rTsync rang-
ing from the diffusive regime (mixing independent
of rTsync) to the curves where both the local and
bounded regimes are shown. It is important to note
the similarity of the observed shapes (for a wide
range of V values) where we find the local phase
concentrated around the minimum value of χsync

that gradually grows in a power law fashion as the
performance of the system decreases (it consumes
more energy to synchronize).

The introduction of the new parameter χsync

allows us to present a phase diagram of our sys-
tem relating the overall performance (in terms of
efficiency) with the synchronizing mechanism used
(Fig. 5). We identify the diffusive regime in the
zone of high velocities V ∼ O(10) where both val-
ues of χ and rTsync are almost independent of r.
This zone falters into the bounded one as V and spe-
cially r decreases, where both the efficiency and the
mixing of the system is reduced. Finally for small
enough velocities, the local zone is clearly visible

10-2

10-1

100

0.05 0.10 0.20

χ s
yn

c

r

V=0.10
V=0.17
V=0.26

V=0.39
V=0.59
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V=1.32
V=1.98
V=2.96
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100

  10  100 1000

χ s
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V=2.96
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V=10.0

V=13.2
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Fig. 4. (a) The average value of χ at the synchronization time (χsync) as a function of r for several values of V . (b) χsync as
a function of rTsync for several values of V . All the means have been performed over 200 realizations.
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Fig. 5. (a) The efficiency rTsync as a function of r and V . The heat map of χsync has been superimposed to the surface
rTsync(r, V ). (b) The same quantities, zoomed in the most sensitive region of the parameter space.

with low values of system mixing. From the map one
clearly observes that the most beneficial synchroniz-
ing mechanisms (in terms of energy consumption)
are the diffusive and local ones.

5. Conclusions

Following the recent literature on complex systems,
one of the hottest topics is the relation between
dynamics and topology of interactions. In partic-
ular, there is much evidence that the patterns of
interaction change rapidly with time, thereby com-
pletely altering and conditioning the dynamical
properties of the system.

Here we have proposed a framework in which
agents move on a plane and are allowed to interact
in a pulsing way. Each agent, representing a phase
oscillator, moves at a common velocity and changes
its internal phase with a common period. When this
internal phase reaches a threshold value, the oscilla-
tor “fires”, thus resetting its own phase as well as its
orientation. At the same time, this oscillator inter-
acts with the neighbors within a certain distance
by changing their phases. Notably, this interaction
setting makes the system reach a final synchronized
state in which all oscillators fire at unison within
the same fast scale.

Keeping all geometrical parameters constant,
we analyze the system behavior by changing solely
the velocity of the agents and the interaction range.
Notice that the motion of the agents is what ensures

that the system will be able to synchronize. If the
agents are static, a minimal fixed topology will be
required to connect them (what is called a giant
component in network terminology). In contrast, a
population of moving agents (even when the inter-
action range is small) will eventually synchronize.

We measure the time needed for the system
to synchronize as a function of the two relevant
agent parameters, the velocity and the fraction of
population they interact with. Our model can be
applied, for instance, to the field of wireless com-
munications by introducing the performance, which
stands for the total number of signals emitted by
the population to reach the synchronized state. Our
simulations show that the time required for synchro-
nization ranges widely, depending on the speed of
the agents. As expected, the optimal performance is
achieved when agents move very fast, irrespective of
the interaction range; however, synchronization in
systems with low mobilities dramatically depend on
the interaction range.

Finally, we have focused on the mechanisms
that the system follows along its path to synchro-
nization. We have introduced a new order parame-
ter, that stands for the fraction of different units
each oscillator has interacted with. This order
parameter complements performance, and a novel
phase diagram enables us to identify three different
characterizable mechanisms leading to synchroniza-
tion: (i) the diffusive mechanism, where the system
very quickly reaches synchronization by means of
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extremely effective interactions of each oscillator
with a large fraction of the population; (ii) the
local mechanism, where agents only interact with
a small population fraction, but local synchroniza-
tion is sufficient to lead the system to the glob-
ally synchronized state; and finally (iii) the bounded
mechanism, characterized by very slow motion and
short range of interaction, which allow a high
degree of accumulated mixing during a very long
synchronizing time.

The identification of these mechanisms that
relate mobility and interaction to synchronization
will undoubtedly be crucial in similar models of
populations of moving agents. Indeed, understand-
ing these phenomena will help to design optimal
protocols to dissect more realistic settings, as well
as to predict their behavior, by defining their inter-
action rules.
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