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Pacemakers in a Cayley tree of Kuramoto oscillators
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Abstract. In this work we study a system of Kuramoto oscillators with iden-
tical frequencies in a Cayley tree. Heterogeneity in the frequency distribution is
introduced in the root of the tree, allowing for analytical calculations of the phases
evolution.
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1. Introduction

The heterogeneous structure of complex networks plays a fundamental role in
the synchronization properties in systems of coupled Kuramoto oscillators Kori
and Mikhailov (2004); Radicchi and Meyer-Ortmanns (2006); Arenas et al.
(2008); Buzna et al. (2009). In order to understand the interplay between
network structure and synchronization dynamics we focus our interest in a
simple topology, the Cayley tree. Taking as a reference a system of identical
oscillators we introduce heterogeneity by changing the natural frequency of
the oscillator located at the root of the Cayley tree. In this way we are able
to obtain analytic results for the phase evolution of the oscillators.

2. The model

We consider as the network structure of our system a Cayley tree of variable
radii and coordination numbers. The nodes follow the dynamics described
by the Kuramoto model of phase oscillators Kuramoto (1984); Acebrón et al.
(2005). All of them have the same natural frequency (taken to be zero without
loss of generality) except for the one located at the root of the tree, that has a
variable frequency. We will refer to this node as the pacemaker. The equations
are

φ̇p = ω +
∑

j

apj sin(φj − φp); φ̇i =
∑

j

aij sin(φj − φi) (1)
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where the first one is for the pacemaker, the second for all the rest. The matrix
aij is the corresponding adjacency matrix for the Cayley tree.

We analyze an order parameter that measures the effective frequency dis-
persion

∆ω =

√

1

N

∑

i∈N

[φ̇i− < ω >]2 (2)

In Fig. 1 we present the time evolution of this order parameter for a
Cayley tree with a coordination number q = 3, and radius R = 5, with a
total of N = 94 nodes. The results correspond to initial conditions with
all the phases equal to zero. For frequencies below a critical value ωc the
order parameter decays exponentially to zero, revealing that for long times
there is no dispersion in the effective frequencies and the system becomes
synchronized. Above ωc the system does not reach equilibrium, and the order
parameter presents an oscillating behavior.

Note also that the frequency dispersion presented in Eq. (2) is not nor-
malized. We divide the frequency dispersion by its maximum allowed value
ω
N

√
N − 1, and thus obtain a normalized order parameter:

rω =

√

√

√

√

1

N − 1

∑

i∈N

[

φ̇i

〈ω〉
− 1

]2

(3)

In Fig. 1 (right) we present the stationary value of the normalized order
parameter as a function of the pacemaker frequency ω. As noted, for values
above ωc the system is not in equilibrium, however it is possible to define a
mean value around which the order parameter oscillates. The figure shows the
behavior observed for three different values of the coordination number, q = 3,
4 and 5. As q grows, the critical value also grows accordingly. The inset in
the figure shows the data collapse obtained by scaling the natural frequency
of the pacemaker with the coordination number, ω/q.

3. Results

The order parameter defined by Kuramoto is z(t) = 1

N

∑

j exp(iφj). Following
the calculation of Ref. Prignano and Dı́az-Guilera (2010) an upper bound for
the critical condition for synchronization of the pacemaker with the system
is φj − φp = −π

2
, where j are the first neighbors of the pacemaker. If we

consider a star shaped network with the pacemaker in the center, then this
last equation becomes

z(t) =
1

N
[exp(iφp)(1 − ikp)] (4)
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Figure 1: (Left) Effective Frequency Dispersion Order Parameter vs. time.
(Right) Normalized Frequency Dispersion Order Parameter vs. natural fre-
quency of the pacemaker ω.

and we have an analytical expression for the behavior of the Kuramoto order
parameter. While for the effective frequencies we obtain:

φ̇i"=p = − sin

(

2 arctan

[

A tan

(

−
A

2
t + B

)

− N

])

; (5)

and

φ̇p = ω + (1 − N)φ̇i"=p, (6)

where A =
√

ω2 − N and B = arctan(N
A ). Note however, that if we consider

a Cayley tree with increasing radius then the last term becomes clearly dom-
inant, and eventually, the perturbation introduced by the pacemaker will not
be detected by the order parameter.

4. Conclusions

Taking a Cayley tree as a reference structure, we have computed analytically
the effect of a single pacemaker located at the root of the tree for a system of
Kuramoto oscillators.
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