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In this work, we study a system of Kuramoto oscillators with identical frequencies in a Cayley
tree. Heterogeneity in the frequency distribution is introduced in the root of the tree, allowing
for analytical calculations of the phase evolution. In this work, we study a system of Kuramoto
oscillators with identical frequencies in a Cayley tree. Heterogeneity in the frequency distribution
is introduced in the root of the tree, allowing for analytical calculations of the phase evolution.
This simple case can be regarded as a starting point in order to understand how to extract
topological features of the connectivity pattern from the dynamic state of the system, and
vice versa, for the general situation of a set of phase oscillators located on a tree-like network.
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1. Introduction

The heterogeneous structure of complex networks
plays a fundamental role in the dynamical prop-
erties of systems of interacting units, a paradig-
matic example being synchronization, conceived as
an emerging coherent behavior [Pikovsky et al.,
2001; Osipov et al., 2007]. Understanding the role
of connectivity in synchronization has been the sub-
ject of intense research in recent years [Arenas et al.,
2008]. These studies have been carried out along
two main directions. The first is the search for nec-
essary and sufficient conditions granted that a pop-
ulation of units obeying simple dynamical rules is
able to synchronize, in the framework of dynami-
cal systems theory [Winfree, 1980]. The second is
the definition and in-depth investigation of precise
models of phase oscillators, one of the best known
being a model proposed by Kuramoto [Kuramoto,
1975; Acebrón et al., 2005] where the interaction
between the units follows a sine function.

Our work goes along this second line, since
we consider a system of coupled Kuramoto oscilla-
tors. While in his original work Kuramoto, as well
as many other authors later, considered oscillators
equally coupled to each other, we take into account
a heterogeneous interaction pattern. Here our choice
is that of a very simple topology, the Cayley tree,
for which we are able to compute analytically some
interesting quantities.

In the large majority of previous studies, the
natural frequencies of the oscillators are taken from
a given distribution. The nonzero width of this dis-
tribution allows the units to follow different tra-
jectories, while, on the other hand, the interaction
term leads to the units approaching their phases. It
was shown that there exists a critical value of the
interaction strength above which the system gets
into the coherent regime. The precise value at which
this transition takes place depends on the width of
the frequency distribution, but not on the details
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as far as it is bounded. If all the natural frequen-
cies of the oscillators are identical, then the system
will end up in a synchronized (same phases) state,
in general, for any connected topology and any ini-
tial conditions (with just some limitations [Diaz-
Guilera & Arenas, 2008]). In our case, for simplicity,
we choose a particular bimodal frequency distribu-
tion where only one single oscillator has a natural
frequency different from that of the rest of the pop-
ulation. Then, we can say that this case can be
regarded as the simplest perturbation to the trivial
homogeneous case.

Up to now, the role of a particular oscillator,
characterized by a higher natural frequency, has
been analyzed in detail for several kinds of regu-
lar as well as for random networks, and analyti-
cal calculations have been performed. In works like
[Kori & Mikhailov, 2004] this special oscillator is
not affected by the others, while in [Radicchi &
Meyer-Ortmanns, 2006] the interaction between a
particular element and its neighbors is triggered by
a parameter and can vary from totally asymmetri-
cal to symmetrical. Anyway, in both cases it is usual
to refer to the oscillator playing this special role as
the pacemaker.

In our particular case, we locate the pacemaker
at the root of the Cayley tree focusing on the
dynamical consequence of the perturbation intro-
duced by its presence. In this way we are able to
obtain analytic results for the phase evolution of
the oscillators.

2. The Model

We consider as the network structure of our sys-
tem a Cayley tree of variable radii and coordination
numbers (Fig. 1).

The nodes follow the dynamics described by the
Kuramoto model of phase oscillators [Kuramoto,
1984; Acebrón et al., 2005]. All of them have the
same natural frequency (taken to be zero without
loss of generality) except for the one located at the
root of the tree, that has a different natural fre-
quency ω. We will refer to this node as the pace-
maker. The equations are

φ̇p = ω +
∑

j

apj sin(φj − φp); (1)

φ̇i =
∑

j

aij sin(φj − φi) ∀ i #= p, (2)

Fig. 1. Cayley tree with coordination number q = 3 and
radius R = 5. The pacemaker is located at the root of the
tree (filled circle).

where the first one is for the pacemaker, the second
for all the rest. The matrix aij is the corresponding
adjacency matrix for the network.

Notice that for our natural frequencies distri-
bution it is never possible to reach synchronization
in an equal phase state, that is, a state where all
the interaction terms vanish. It is also important
to stress synchronization does not depend on the
choice we made of a null natural frequency for all
the N −1 oscillators except the pacemaker. Indeed,
we can change the mean value of the natural fre-
quencies distribution by just rotating the frame,
without any modification of dynamical properties
of the system. For instance, we could choose a zero
mean distribution, that can be obtained applying
the following transformation to the phases: ϕi →
ϕi + Ωt, in which Ω = ω/N is the first moment of
the distribution.

3. Characterizing the Global
Behavior

The transition from an incoherent to a synchro-
nized state is usually described by means of an order
parameter introduced by Kuramoto:

z(t) =
1
N

∑

j

exp(iφj). (3)

The amplitude of this quantity is proportional to
1/N in the incoherent regime whereas it grows
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Fig. 2. (a) Effective frequency dispersion order parameter ∆ω (4) versus time. (b) Normalized frequency dispersion order
parameter rω (5) versus natural frequency of the pacemaker ω.

with decreasing ω in the phase-locked state and
asymptotically it tends to 1 as ω tends to 0
(phase-locking state). Anyway, since our system can
undergo a phase synchronization only at local level,
this parameter is not an appropriate one in order
to describe its global dynamical behavior.

Then, following [Prignano & Diaz-Guilera,
2012], we analyze an order parameter already intro-
duced and used in [Buzna et al., 2009] and [Sendiña-
Nadal et al., 2008] that measures the effective
frequency dispersion:

∆ω =
√

1
N

∑

i∈N

[φ̇i − 〈ω〉]2. (4)

In Fig. 2(a) we present the time evolution of
this order parameter for a Cayley tree with a coor-
dination number q = 3, and radius R = 5, with a
total of N = 94 nodes. The results correspond to
initial conditions with all the phases equal to zero.
For frequencies below a critical value ωc the order
parameter decays exponentially to zero, revealing
that for long times there is no dispersion in the
effective frequencies and the system becomes syn-
chronized. Above ωc the system does not reach
equilibrium, and the order parameter presents an
oscillating behavior.

Note also that the frequency dispersion pre-
sented in Eq. (4) is not normalized. We divide the
frequency dispersion by its maximum allowed value
ω
N

√
N − 1, and thus obtain a normalized order

parameter :

rω =

√√√√ 1
N − 1

∑

i∈N

[
φ̇i

〈ω〉 − 1

]2

. (5)

In Fig. 2(b) we present the stationary value of
the normalized order parameter as a function of
the pacemaker frequency ω. As noted, for values
above ωc the system is not in equilibrium, however,
it is possible to define a mean value around which
the order parameter oscillates. The figure shows the
behavior observed for three different values of the
coordination number, q = 3, 4 and 5. As q grows,
the critical value also grows accordingly. The inset
in the figure shows the data collapse obtained by
scaling the natural frequency of the pacemaker with
the coordination number, ω/q.

4. Results

In order to analyze the relation between the topol-
ogy of the connectivity pattern and the ability of the
system to reach a synchronized state, we notice that
when we increase the regulator frequency ω then
there will be some oscillators that cannot keep the
phase difference, breaking the synchronized state.
The left-hand side of Eq. (2) is indeed bounded
because of the sine terms, whereas the right term
increases as the regulator frequency is increased.
The same happens in Eq. (1). Consequently, there
will be a transition from a synchronized to an inco-
herent state, at a precise value of ω. Thus, we
can define the natural frequency of the pacemaker
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critical value as follows:

ωc
p

ω
> ωc

p ! frequency locking state

i.e. ωc is that value of the frequency of the regu-
lator above which no synchronized state exists. In
the case of a Cayley tree topology, it is possible to
analytically calculate this quantity. We start notic-
ing that, since the existence of a steady state is a
necessary condition for a frequency-locked state, we
can compute the constant value that all the effec-
tive frequencies are going to take for a stationary
condition. First of all, we notice, following [Prig-
nano & Diaz-Guilera, 2012], that summing up all
the Eqs. (1) and (2) we have:

N∑

i=1

Ωi = ω (6)

where Ωi are the stationary effective frequencies.
Consequently, if they all take the same value, this
will be ω/N . In this case, the system is in a syn-
chronized state where all the frequencies are equal
and constant. Now we can calculate, as a function
of the radius R and of the connectivity number q,
that is the maximum value ω such that all the oscil-
lators reach an effective frequency equal to ω/N .
Since the left side of the phase evolution equation
for the pacemaker (1) is bounded, it is clear that a
bound exists. Indeed, it is when all the sine terms
in that expression take values −1 that we have the
maximum ω able to satisfy this equation. So we
have found the following condition for the critical
frequency:

ωc ≤ q
N

N − 1
= q +

[
R−1∑

r=0

(q − 1)

]−1

. (7)

where in the last equality we used the expression
N = 1 + q

∑R−1
r=0 (q − 1).

Locating the pacemaker at the root is a spe-
cial situation of the more general case discussed
in [Prignano & Diaz-Guilera, 2012]. There it was
shown how this particular configuration, where all
the neighbors of the pacemakers keep a phase differ-
ence equal to −π/2, is not always allowed. Indeed,
the interplay of other equations, different from that
of the pacemaker, may cause a breaking of the sta-
tionary condition earlier.

In order to take into account all these contribu-
tions, according to [Prignano & Diaz-Guilera, 2012],

for an arbitrary topology of the interactions, we can
generalize inequality (7) in the following form:

ωc ≤ N

[
Kout

Nout

]

min

(8)

where
[

Kout
Nout

]
min

is the minimum ratio for a con-
nected component of the connectivity pattern
including the pacemaker, Nout being the number
of nodes outside the considered group and Kout the
number of “external links” connecting the compo-
nent with the rest of the network. This expression
reduces to (7) if we take into account just the pace-
maker itself, since in this case we have Nout = N−1
and Kout coincides with the degree of the pace-
maker, q in our case. Doing so, we are not minimiz-
ing the ratio in Eq. (8), we are instead maximizing
its denominator but often it is a very good approx-
imation. Moreover, if the connectivity pattern has
a tree-like topology, that is, there is no cycle on it,
Eq. (9) is not just a bound, but the exact expression
of the critical frequency.

The precise case of a Cayley tree topology
of the connectivity pattern has been analyzed in
[Prignano & Diaz-Guilera, 2012], where an explicit
expression of the inequality (8) is provided for a tree
of radius R and coordination number q, where the
pacemaker is located at distance r from the center:

ω(r)
c =

N

N −
R−r∑

i=0

(q − 1)i
. (9)

It is easy to show that the new bound simply coin-
cides with (7) when the distance between the pace-
maker and the center of the Cayley tree is r = 0.
Consequently, we can rewrite Eq. (7) in the form of
an equality:

ωc = q +

[
R−1∑

r=0

(q − 1)

]−1

, (10)

it is the critical value for the natural frequency of a
pacemaker located at the root of a Cayley tree.

In order to better describe the dynamical
behavior of the system above the critical point, it is
useful to compute the order parameter defined by
Kuramoto. Indeed, even if it is not useful in order
to identify the transition point, this quantity pro-
vides interesting qualitative information about the
global time evolution of the phases when the coher-
ent state is broken.
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First, we can ask ourselves what is the behavior of this quantity exactly at the critical point. In order
to do this, we can rewrite the order parameter defined in (3) as

z(t) =
1
N



exp(iφp) +
q∑

j=1

exp(iφj) +
N−q−1∑

l=1

exp(iφl)



, (11)

where the units labeled j are the first neighbors of the pacemaker, and those labeled l all the rest. Now,
using the critical condition for the synchronization φj − φp = −π

2 , we have:

z(t) =
1
N



exp(iφp) +
q∑

j=1

exp
(
i
(
φp −

π

2

))
+

N−q−1∑

l=1

exp(iφl)



 (12)

z(t) =
1
N

[
exp(iφp)

(
1 + q exp

(
−i

π

2

))
+

N−q−1∑

l=1

exp(iφl)

]
(13)

z(t) =
1
N

[

exp(iφp)(1 − iq) +
N−q−1∑

l=1

exp(iφl)

]

(14)

In general, this quantity is not computable analytically since the phases are mutually coupled by transcen-
dental equations. However, if we consider a star shaped network, that is, a one level Cayley tree (R = 1),
then this last equation becomes

z(t) =
1
N

[exp(iφp)(1 − iq)] (15)

and we have an analytical expression for the behavior of the Kuramoto order parameter. For this simple
case, it is also possible to achieve an analytical expression for the time evolution of effective frequencies:

φ̇i#=p = −sin
[
2 arctan

([
A tan

(
−A

2
t + B

)
− N

]
1
ω

)]
; (16)

and

φ̇p = ω + (1 − N)φ̇i#=p, (17)

where A =
√

ω2 − N2 and B = arctan(N
A ). Plotting

the values of the order parameters (14) and (15) in
the complex plane, for a sufficiently large time win-
dow, we can see what happens below and above
the critical point. In the first case, we have a cir-
cle whose radius decreases as we increase the nat-
ural frequency of the pacemaker. At the critical
point this circle takes its minimal size. If we fur-
ther increase the value of ω then we get something
that is completely different, although the figure is
still a closed curve with central symmetry. In Fig. 3
we plot a sequence of images of the values taken by
parameter (14) during time windows of increasing
duration.

In Fig. 4, we plot the final frame of some
sequences analogous to the previous one, for dif-
ferent values of ω, in the case of a star. All these

plots are obtained by numerical simulation, except
for the critical order parameter for the star in Fig. 4.
Both figures show how, above the critical point,
these values approach initially a circle smaller than
the critical one, then they depart from it rapidly. It
implies that the effective frequencies of all oscilla-
tors approach each other during a certain time lag,
but then they cannot reach a stable constant value.
This situation is also confirmed in Fig. 5, where we
plot expressions (16) and (17) for several values of
ω ≥ ωc. It is easy to notice how all the frequencies
reach the same meta-stable value if ω is not too far
from ωc, keeping it during a time lag that decreases
on increasing ω, until it disappears. Then the fre-
quencies of the pacemaker and those of the other
oscillators get completely apart. In all cases, the
frequencies show a periodical trend with a common
period.

Finally, we wish to compare this analytically
solved simple case (the star) with the general case
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Fig. 3. Values taken in the complex plane by parameter (14) for a Cayley tree of radius R = 4 and coordination number
q = 3, during time windows of increasing duration. The pacemaker natural frequency is ω = 1.01ωc.

Fig. 4. Curves described in the complex plane by the order
parameter (15) for a star of degree q = 3 and different values
of the pacemaker natural frequency. That corresponding to
the critical value is analytically computed while the others
are obtained by numerical simulations.

of a Cayley tree of arbitrary radius R (see Fig. 6).
There are two main considerations for the general
case. First, we notice that the time evolution of
the effective frequency of the pacemaker and its
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Fig. 5. Time evolution of the effective frequencies of the
pacemaker (up) and its neighbors (down) in star of coordina-
tion number q = 3 for different values of the pacemaker nat-
ural frequency ω > ωc: ω = 1.01 ωc (black line), ω = 1.05 ωc

(red line), ω = 1.20 ωc (blue line).
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Fig. 6. Comparison of the time evolution of the effective
frequencies of the pacemaker (up) and its neighbors (down)
in Cayley trees of coordination number q = 3 and different
radii. The radii are respectively R = 1 (black line, analyt-
ically computed), R = 2 (red line), R = 3 (blue line) and
R = 8 (pink line).

neighbors, changing the radius R (and consequently
the size N), given the same ω, differ from the cor-
responding quantities for a star of equal q, just for
the oscillation period. Actually, they share the same
maximum and minimum values, and it is possible
to transform one curve into another rescaling time
t → t′ = αt. However, there is no trivial expression
for the rescaling factor α. Then we observe that,
at least for large enough ω, the perturbation intro-
duced by the pacemaker on the dynamics in the
more external shells can be neglected (see Fig. 7).

The frequencies of these units oscillate with a very
small amplitude, when compared with those of the
pacemaker and the most internal shell, around a
mean value that is the same for all the oscillators
that are not the leading one.

In terms of the order parameter this means that
if we consider a Cayley tree with increasing radius,
the last term in Eq. (3) becomes clearly dominant,
and eventually, the perturbation introduced by the
pacemaker will not be detected (see Fig. 7, right
panel).

5. Conclusions

Analytical results are quite scarce when deal-
ing with dynamical properties of nonlinear sys-
tems embedded in complex topologies. We have
presented here a paradigmatic model with some
assumptions that relax topological complexity, but
nevertheless maintain the inherent dynamical com-
plexity. Cayley trees or Bethe lattices have been the
subject of many analysis in the literature because
its recurrent topology facilitates the achievement of
exact results. In our case, taking a Cayley tree as a
reference structure, we have computed analytically
the effect of a single pacemaker located at the root
of the tree for a system of Kuramoto oscillators.
We have then found exact values for the critical
frequency of the pacemaker above which the sys-
tem is not able to synchronize and also exact val-
ues for the order parameter introduced originally
by Kuramoto. These results concern the relation

Fig. 7. Comparison of the effective frequencies time evolution in a Cayley tree of radius R = 4 and coordination number
q = 3. The red line (left panel) corresponds to the pacemaker, the blue one to the nodes of the first shell, the others to the
second (green) and the third one (black). In the right panel we have removed the pacemaker effective frequency zooming in
on the others in order to show the hierarchical organization of the amplitudes of the frequency oscillation. The pacemaker
natural frequency was 20 times larger than its critical value.
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between topology and dynamics in a system of inter-
acting units in a tree structure. They provide impor-
tant clues on this relation in a number of situations
where the connectivity patterns are tree-like or have
an almost tree-like topology, such as technological
systems, like computer networks [Pastor-Satorras &
Vespignani, 2004], or biological systems, such as
prokaryotic gene regulatory networks [Balazsi et al.,
2005].
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