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PACS 89.75.Hc – Networks and genealogical trees

Abstract – Complex networks grow subject to structural constraints which affect their measurable
properties. Assessing the effect that such constraints impose on their observables is thus a crucial
aspect to be taken into account in their analysis. To this end, we examine the effect of fixing
the strength sequence in multi-edge networks on several network observables such as degrees,
disparity, average neighbor properties and weight distribution using an ensemble approach. We
provide a general method to calculate any desired weighted network metric and we show that
several features detected in real data could be explained solely by structural constraints. We thus
justify the need of analytical null models to be used as basis to assess the relevance of features
found in real data represented in weighted network form.

Copyright c© EPLA, 2014

Introduction. – Modern complex networks theory has
found many applications since its dawn. In particular,
the explosion of information technologies has given rise to
large-scale, high-dimensional data sets, in which hidden
relations might now be uncovered. This has fostered data-
driven studies in a wide spectrum of fields ranging from
biology [1] to social sciences [2], including transportation
studies [3], genomics [4], ecology or bibliometrics [5]. The
repertoire of available networks for data modeling has thus
grown accordingly: binary or weighted [6,7], directed or
undirected, and also simple or multilayer [8,9] structures
have been used. However, extending some of the most ba-
sic concepts and tools, such as clustering coefficient, cen-
trality measures, and even finding suitable null models in
each case has proven harder than expected [10], giving rise
to multiple definitions in some cases and, consequently, to
some controversy.

In fact, the need to distinguish different types of
so-called weighted networks according to the nature of
the events being represented has been pointed out re-
cently [11]. If nodes accept multiple distinguishable con-
nections, then one can speak of multi-edge networks, and it
is in this scenario that we propose a flexible, general theory

for null-model generation. Our results allow to compute
exact analytical expressions for network observables gener-
ated under random conditions but preserving some given
properties or constraints from the original data [12,13].
This allows to quantify the relevance of the observed fea-
tures, which, given the high dimensionality of the studied
data sets in real complex networks, might not be trivial
to detect otherwise [14]. A classical example where this
circumstance is important are Origin-Destination matrices
(OD), where the mobility of agents between departure and
arrival nodes is represented as weighted networks: usu-
ally the average total flow incoming or outgoing from each
site, which corresponds to the strength of a node, is con-
strained by several factors such as population or density
of commercial areas. This fact needs to be assessed on
the observed data as it can generate complicated spatial
patterns that can produce spatial correlations such as the
so-called gravity laws of transportation [3].

In this letter, the effect of fixing an arbitrary strengths
sequence on several network observables is thoroughly
studied. The obtained results serve as a complement to its
binary counterpart, the classical configurational model for
arbitrary degree sequences [15]. We develop the full edge
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and node statistics as well as first-order correlations using
an application of a general ensemble approach developed
in [11], providing not only average expected values for the
observables but also precise bounds for its fluctuations and
we compare the obtained results with simulations, yielding
excellent agreement. By particularizing our general results
to the case of power-law–distributed strengths, commonly
found in real data [16–20], we demonstrate how the null-
model expectations of some widely used weighted network
metrics, which are generally considered a sign of relevant
correlations (see [21] and references therein), can instead
be seen as just a consequence of the particular form of the
imposed strength sequence, and hence may not represent
any unexpected property of the network under study.

Theoretical framework. – We start by considering
a multi-edge undirected network with a fixed number of
nodes N and hence a total of L = N(N + 1)/2 possi-
ble edges. Each edge has an associated integer weight
tij ∈ {0, 1, 2 . . .}, and the strength of a node i is defined
as si =

∑
j tij . We further consider a fixed strength se-

quence {ŝi} ; i ∈ 1, N , so that we have a total of T̂ =
∑

i ŝi

distinguishable events to be randomly allocated among
L edges. Note that the difference between distinguish-
able and non-distinguishable events is crucial, as it hap-
pens usually in statistical mechanics, because the resulting
statistics of the ensembles one can consider depend on this
property (see [11,22] for an extended discussion). As for
the notation, note also that in general we will use x̂ to de-
note the value to which a variable x is being constrained.

To clarify the elements of our system, we can specify
them for the case of an OD study as an illustrative ex-
ample: Nodes correspond to different locations, events to
individual trips between locations, the strengths of nodes
to the fixed amount of travelers departing/entering each
location and the weights correspond to the observed flows
between locations. In this work we consider the case where
self-loops are allowed for simplicity but the methodology
can be easily extended to the case where no self-loops are
accepted or even to directed networks.

Under the circumstances described, in analogy to sta-
tistical mechanics for classical systems, one can consider
the Grand-Canonical (GC) ensemble of graphs (see [23,24]
for different examples of other network ensembles) ful-
filling on average the proposed constraints, i.e. {〈si〉 =∑

j 〈tij〉 = ŝi} (throughout this letter 〈x〉 will refer to
the ensemble average of random variable x whereas x̄ will
refer to the graph average of variable x over a single re-
alization). This means that both the occupation numbers
or weights tij and the node strengths si =

∑
j tij are in-

teger random variables, and that each network belonging
to the ensemble corresponds to a different realization of
such variables. However, relative fluctuations around the
constraints 〈si〉 = ŝi vanish in the large event limit [11].
The GC ensemble yields independent Poisson statistics
for the occupation numbers tij with mean 〈tij〉 = βxixj ,
where {xi} can be considered as node-specific hidden

variables [25–27]. The values of {xi} can be obtained by
solving the N saddle point equations ŝi = βxi

∑
j xj that

define the constraints of the system, which correspond to
fixing the (ensemble) average strength of each node in the
network. This set of equations is easily solvable analyt-
ically yielding xi = ŝi ∀i and β = T̂ −1. In this way
the expression 〈tij〉 = ŝiŝj/T̂ is reached: the left-hand
side is the ensemble average of a random variable, while
the right-hand side is a result expressed in term of the con-
straints. In our case the {ŝi} are the only fixed quantities
and hence we must take them as the basic variables from
which to derive the rest of weighted network properties:
All nodes sharing the same strength value ŝi = ŝ are sta-
tistically equivalent, and possess self-averaging properties
(likewise all edges connecting nodes with the same pair of
strength values). In what follows, we show how to pro-
ceed to obtain some particular network metrics, although
the procedure is fully general and permits to obtain any
desired property.

General methodology. – Many network metrics
widely used in the literature can be written as a quotient
of functions of the edge weights M = x(tij)/y(tij). In
our framework, {tij} are random variables and computing
〈M〉 is not straightforward. We thus need to rely on ap-
proximations, expanding the expressions in Taylor series
around their mean values and then taking the ensemble
average of the first terms of the sum:

〈M〉 � 〈x〉
〈y〉

(
1 +

〈y2〉
〈y〉2 − 〈xy〉

〈x〉〈y〉
)

, (1)

σ2
M � 〈x〉2

〈y〉2
(〈

x2
〉

〈x〉2 +

〈
y2
〉

〈y〉2 − 2
〈xy〉

〈x〉〈y〉

)
. (2)

These expressions can be used to compute expected values
and fluctuations of any network metric expressed as a ratio
of functions of the occupation numbers x(tij), y(tij) pro-
vided that the moments (〈x〉, 〈x2

〉
, 〈y〉, 〈y2

〉
) in the right-

hand side can be evaluated. This is usually the case when
x(tij), y(tij) are algebraic expressions of {tij} (which are
uncorrelated random variables). For most metrics M con-
sidered in this letter, the calculations of the moments of
x(tij) and y(tij) are lengthly, but follow from a general
methodology without further difficulty1. We thus sub-
sume them in the appendix also explaining the general
strategy used in their calculation, stating here only the
key results.

Distribution of weights. – We start by computing
the distribution of occupation numbers or weights

P (t) =
1
E

∑
ij

δ(t, tij) (3)

(E =
∑

ij Θ(tij) refers to the total number of ex-
isting edges), which has been reported to have broad

1And can be easily implemented using any standard
mathematical symbolic software.
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Fig. 1: (Color online) The effect of the strength sequence on
network observables. Top: ensemble average of distribution
of occupation numbers over existing edges (log-binned) and
analytical predictions given by expression (4) and its standard
deviation (see appendix, eq. (A.1)) for power-law–distributed
strength sequences with N = 104 and different exponents for
1000 repetitions. The dependence on sampling s̄ = T̂ /N is
apparent. Bottom: degree-strength relationship for the same
networks as earlier (average) and theoretical predictions from
eq. (5). Standard deviation are represented as error bars and
lines of constant slope are provided as a guide to the eye.

forms on empirical data for airport flow [16], cargo ship
transport [17], public transport in cities [18], commut-
ing [19] or face to face interactions [20] among others.

Applying eq. (1) to the case of P (t) yields

〈P (t)〉 =

〈∑
ij δ(t, tij)∑
ij Θ(tij)

〉
�
∑

ij e−〈tij〉〈tij〉t

t!〈E〉 + O(〈E〉−2),

(4)
being Θ(x) the Heaviside step function. Figure 1 shows
the distribution of occupation numbers for existing edges
and its associated standard deviation (see eq. (A.1) in the
appendix) for three networks generated using power-law–
distributed strength sequences (γ = 1.5, 2.5) and different
graph-average strength s̄ = T̂ /N . We can see that the
form of the resulting distribution is broad due to the im-
posed form of the strength sequence, and hence is not a
sign per se of any interesting property of the multi-edge
network being studied. Moreover, its shape strongly de-
pends on the total number of observed events T̂ .

Degrees and strengths. – Having tackled the occu-
pation number statistics of the network, in what follows

we consider its node-related properties. We have that
the strengths si =

∑
j tij will also be Poisson-distributed

random variables, being sums of independent occupation
numbers. Moreover, since the binary projection of occu-
pation numbers Θ(tij) are Bernoulli-distributed variables
with parameter P (tij > 0) = 1 − e−〈tij〉 [11] one can also
compute the associated degrees ki of the nodes, which will
be sums of independent Bernoulli random variables2. We
have that

〈k(ŝi)〉 =

〈∑
j

Θ(tij)

〉
=
∑

j

P (tij > 0) =

∑
j

(
1 − e−〈tij〉

)
= N −

∑
j

e− ŝiŝj

T̂ ,

(5)

σ2
k(ŝi) =

∑
j

σ2
Θ(tij) =

∑
j

e−〈tij〉
(
1 − e−〈tij〉

)
=

N − 〈k(si)〉 −
∑

j

e−2
ŝiŝj

T̂ ,
(6)

which constitutes an extremely accurate prediction (see
fig. 1 lower panel). The asymptotic cases for the ensemble
averages are easy to asses: For small strengths we have
that ŝ � T̂ /ŝ′ ∀ŝ′ which leads expression (5) to 〈k(ŝ)〉 ∼ ŝ
(converging to a Poisson distribution for degrees due to the
properties of the Poisson Bernoulli distribution), while for
large strengths one has ŝŝ′ 	 T̂ ∀ŝ′ which leads to fully
connected nodes 〈k(ŝ)〉 ∼ N with vanishing variance.

Results comparing simulations and eq. (5) are shown
in fig. 1 (lower panel), where an interesting transition is
observed for γ < 2: The degrees are exactly equal to the
strengths for small values of ŝ (as expected by conservation
of the edges) and evolve to a scaling of the type k(ŝ) ∼
ŝγ−1 that finally leads to a saturation due to the bounded
nature of the observables (k(ŝ) ≤ N).

The important result to take home here is that a scal-
ing relation of the kind k(s) ∼ sβ is not always a reliable
trace of correlations. More concretely, we have seen that in
our framework, and for the case of power-law–distributed
strength sequences in particular, it is solely a consequence
of the imposed constraints. In other cases, it might or
might not be an indicator of correlations, but one can-
not assume either case a priori : Since this metric heavilly
depends on the strength sequence, it always requires com-
parison with a null model.

Disparity, average neighbor properties and gen-
eral metrics. – In recent times, efforts have been de-
voted to extend well-known magnitudes on binary graphs
to weighted graphs: Having appropriate null models for
multi-edge graphs permits to assess the applicability of
such weighted extensions [29]. To this end, one can use
the results of the GC ensemble to compute with high ac-
curacy any network metric expressed in terms of tij : As an

2The distribution of such variables is called Poisson Bernoulli
and has well-studied properties [28], albeit their moments are diffi-
cult to compute. One can, however, give bounds to the error commit-
ted whenever assuming a Poisson approximation also for the degrees.
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Fig. 2: (Color online) The accuracy of the GC predictions.
Ensemble average (a), (e) and standard deviation (b), (f)
for individual node disparity Y2 and weighted neighbor av-
erage strength sw

nn for power-law–distributed sequences with
s̄ = 1000 and γ = 2.5. (c), (d), (g), (h): histogram of relative
error between theory and simulations averaged over 1000 rep-
etitions for the values in panels (a), (e) and (b), (f). A single
outlier corresponding to the lowest value of σ for both the dis-
parity and the average neighbor strength is not shown in the
histogram in panels (c), (g).

example we consider widely used magnitudes such as the
disparity Y2(si) =

∑
j t2ij/s2

i [30] and weighted neigh-
bor average strength sw

nn(si) =
∑

j tijsj/si [31]. Using
again eq. (1), and the fact that {tij} are a set of Poisson-
distributed, independent random variables, one reaches af-
ter some algebra the following expressions:

〈Y2(ŝi)〉 � 1 + T̂2

T̂ 2 ŝi

1 + ŝi

⎛
⎝1 +

(
T̂ 2 − T̂2

)
(2ŝi + 3)

(ŝi + 1)2
(
T̂2ŝi + T̂ 2

)
⎞
⎠ , (7)

〈sw
nn(ŝi)〉 �

(
1 +

T̂2

T̂

)(
1 − T̂2 + T̂ ŝi − ŝ2

i

T̂ (T̂ + T̂2)

)
, (8)

where T̂n ≡ ∑
ŝn

i . The average values and their fluctua-
tions are in excellent agreement with the simulations, as

Fig. 3: (Color online) Convergence between ensembles with
increased sampling. Relative error between ensemble average
predictions and simulations, averaged over all nodes for degree,
disparity and average neighbor strength for different values of
sampling s̄ = T̂ /N for 1000 repetitions each point, γ = 2.5 and
N = 2000.

can be seen from fig. 2, panels (a), (b), (e), (f). The ex-
pressions corresponding to σ2

sw
nn

and σ2
Y2

, and some details
on how to compute them, can be found in the appendix.

The results show several interesting features: On the
one hand, the expectation for the disparity is not Y2(ŝ) ∼
k−1

i as assumed under a total random allocation of
edge weights [30], but rather decays as Y2 ∼ ŝ−1

i and
rapidly converges to a plateau, independently of the cho-
sen strength distribution. The weighted average neighbor
strength displays an almost flat behavior which is a cor-
rect indicator of absence of correlations at the node level.
On the other hand, the fluctuations of both magnitudes
decay in a power-law form as the strength of the node in-
creases: This fact can be easily understood as increased
connectedness imply higher availability of sampling.

Simulations. – To quantify the precision of our pre-
dictions, we computed the histograms of the relative error
generated per node when calculating a given property z,
ε(z) = (〈z〉si − 〈z〉th)/〈z〉si, where the subindices si stand
for the Micro-Canonical (MC) simulations3 and th for the
GC theoretical predictions in eqs. (7) and (8). The his-
tograms in fig. 2, panels (c), (d), (g), (h) show the accuracy
of the obtained results, providing numerical evidence for
the equivalence between the MC simulations and the GC
predictions, which is expected in the thermodynamic limit
when an infinite sampling of events T̂ → ∞ is available.
Even when this requisite is not met, the use of the the-
ory presented here constitutes an excellent approximation
as shown in fig. 3, where the relative error averaged over
all nodes between ensemble expected GC magnitudes and
simulations is shown for the different metrics considered
for a wide range of values of sampling.

3The simulations have been performed using a general configura-
tion model rewiring schema with allowed self-loops and multiple col-
lections between links [32]. The code for the generation of multi-edge
networks and details on the implementation can be found in [33].
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Conclusions. – In the present letter, we have provided
a theoretical framework for multi-edge networks with a
fixed strength sequence that can be used to assess the im-
pact of this structural constraint on the observables of real
networks. We provide closed statistical forms for the edge
and node statistics by means of a GC ensemble formal-
ism, which coincide with great accuracy with simulations
in the MC ensemble, for which we additionally provide the
software in [33].

The general results for any given strength sequence
have been studied, and precise analytical closed forms
of both the average expected values and fluctuations of
some widely used network metrics such as the existing oc-
cupation number distribution, node degree and strength,
disparity and first-order neighbor correlations have been
obtained. We have further used the case of power-law–
distributed sequences as an example to show that the ef-
fect of the skewness of this distribution over some widely
used network metrics can explain some of the correlations
detected in real weighted complex networks.

The effects of the strength sequences are remarkable in
all the metrics considered, which stresses the need for real
data to be tested against appropriate null models to assess
the relevance of observed properties. Interestingly, second-
order neighbor correlation properties such as clustering
coefficients and its different weighted versions [10] could
be similarly computed with the methodology presented,
albeit they lead to more complicated expressions. We leave
this to future research.

The blessing of big data may also be its dearest dan-
ger: High-dimensionality data sets require sophisticated
null models to detect the effects of the system constraints
on the given observables and hence comparison with a null
model to assess the relevance of observed features in real
data is always needed. The present application of ensem-
ble theory to networks yielding exact results for both aver-
age values and fluctuations aims to draw attention to this
problem and to close this gap for the case of multi-edge
networks.

∗ ∗ ∗

We thank M. Szell for comments and suggestions.
This work has been partially supported by the EU-
LASAGNE Project, Contract No. 318132 (STREP),
the Spanish MINECO Grants FIS2012-38266-C02-02 and
FIS2012-31324 and by the Generalitat de Catalunya 2009-
SGR-00838. OS and FF have been supported by the Gen-
eralitat de Catalunya through the FI Program.

Appendix

We gather here the expressions for the standard
deviation of all the metrics considered:

σ2
P (t) � Q1

〈E〉2
(
1− Q2

Q1
+

1
〈E〉Q1

[
1−2

R1

Q1

]
− R2

〈E〉2Q1

)
, (A.1)

σ2
Y2

� T̂ −2
1

(
a3ŝ

3
i + a2ŝ

2
i + a1ŝi + a0

(ŝi + 1)4

)
, (A.2)

σ2
sw

nn
� b−1

1
ŝi

+ b0 + b2ŝ
2
i + b3ŝ

3
i , (A.3)

where E is the number of present edges and we have
defined the following notation:

pij(t) ≡ e−〈tij〉〈tij〉t
/t!, 〈tij〉 = ŝiŝj/T̂ , (A.4)

Q1 =
∑
ij

pij(t), R1 =
∑
ij

pij(t)pij(0), (A.5)

Q2 =
∑
ij

(pij(t))2, R2 =
∑
ij

(1 − pij(0))2, (A.6)

a3 = −4
(
T̂ 2

2 − T̂1T̂3

)
, b2 = 2T̂2/T̂ 3

1 , (A.7)

a0 = 2T̂ 4
1 − 2T̂2T̂

2
1 , b3 = −2/T̂ 2

1 , (A.8)

a2 = 2
([

T̂ 2
1 − 5T̂2

]
T̂2 + 4T̂1T̂3

)
, (A.9)

a1 = T̂ 4
1 + 2T̂2T̂

2
1 + 4T̂3T̂1 − 7T̂ 2

2 , (A.10)

b−1 =
(
T̂1

[
T̂2 + T̂3

]
− T̂ 2

2

)
T̂ −2

1 , (A.11)

b0 =
(
−T̂ 2

2 + T̂1

[
T̂2 + 3T̂3

]
− T̂4

)
T̂ −3

1 , (A.12)

with T̂n ≡ ∑i ŝn
i . The calculations leading to these results

are admitedly tedious, but follow directly from eqs. (1)
and (2) and are of no particular difficulty beyond algebraic
manipulation and carefull reordering of the sums. As an
illustrative example, consider the disparity Y2(si) for node
i, defined as

Y2(si) =
∑

j

t2ij
s2

i

. (A.13)

Identifying x ≡∑j �=i t2ij and y ≡ s2
i , eq. (1) can be readily

applied. In order to approximate 〈Y2(si)〉 and σY2 , we need
to compute 〈x〉, 〈y〉, 〈x2

〉
,
〈
y2
〉

and 〈xy〉. Let us show in
full detail, as an illustrative example, how to compute

〈
x2
〉

in this case. First, we expand x2 as follows:

x2 =
∑
j,k

t2ijt
2
ik =

∑
j �=i,
k �=j,i

t2ijt
2
ik +

∑
j �=i

[
t4ij + 2t2ijt

2
ii

]
+ t4ii,

(A.14)
so that when the ensemble average is taken, all products
factorize (they correspond to different pairs of values ij,
which are independent),

〈
x2〉 =

∑
j �=i,
k �=j,i

〈
t2ij
〉〈

t2ik
〉

+
∑
j �=i

[〈
t4ij
〉

+ 2
〈
t2ij
〉〈

t2ii
〉]

+
〈
t4ii
〉
.

(A.15)
Finally, since the variables tij are Poisson-distributed, we
can compute their moments (

〈
t2ij
〉

= 〈tij〉(1 + 〈tij〉)),
and using that 〈tij〉 = ŝiŝj/T̂ , and after some algebra,
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we get to

〈
x2〉 =

T̂ 2
2 ŝ4

i

T̂ 4
1

+

(
2T̂2

T̂ 2
1

+
4T̂3

T̂ 3
1

)
ŝ3

i +

(
6T̂2

T̂ 2
1

+ 1

)
ŝ2

i + ŝi.

(A.16)
The rest of the terms can be computed in a similar vein,
leading to

〈x〉 =
T̂2ŝ

2
i

T̂ 2
1

+ ŝi, 〈y〉 = ŝ2
i + ŝi, (A.17)

〈xy〉 =
T̂2ŝ

4
i

T̂ 2
1

+

(
5T̂2

T̂ 2
1

+1

)
ŝ3

i +

(
4T̂2

T̂ 2
1

+3

)
ŝ2

i +ŝi, (A.18)

〈
y2〉 = ŝ4

i + 6ŝ3
i + 7ŝ2

i + ŝi. (A.19)

Finally, inserting eqs. (A.16)–(A.19) into eq. (1)
and some simplification leads to the desired result,
eqs. (7) and (A.2).
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PLoS ONE, 6 (2011) e15923.

[19] De Montis A., Barthelemy M., Chessa A. and
Vespignani A., Geographical, 34 (2005) 12.

[20] Barrat A., Cattuto C., Colizza V., Gesualdo F.,

Isella L., Pandolfi E., Pinton J. F., Ravà L.,
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