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1 Materials and Methods

1.1 Dataset

The million song dataset [1] is a publicly available collection of audio descriptions and meta-

data for “a million contemporary popular music tracks”1 made available by Columbia Uni-

versity’s LabROSA2 and the company The Echo Nest3. As a whole, it comprises music from

44,745 unique artists and it includes a variety of music genres such as rock, pop, hip-hop,

electronic, jazz, or folk. From the million tracks, 515,576 have information on the release year

according to MusicBrainz4, an open music encyclopedia that collects and makes music meta-

data available. Since there are some duplicate tracks in the original dataset5 and others that

do not have the full audio descriptions (the three music descriptions plus their beat informa-

tion), the size of the dataset used here was reduced to 465,259 items. Further discarding the

years before 1955 due to lack of representativeness, the size of the dataset becomes 464,411.

A diversity of popular music genres is still included in the final subset (Fig. 1).

Figure 1: Tag cloud of the genres included in the analyzed subset of the million song dataset

(using the default MusicBrainz genre information provided in the dataset). The font size

represents the logarithm of number of tracks associated with a given annotation or genre tag.

1http://labrosa.ee.columbia.edu/millionsong
2http://labrosa.ee.columbia.edu
3http://the.echonest.com
4http://musicbrainz.org
5http://labrosa.ee.columbia.edu/millionsong/blog/11-3-15-921810-song-dataset-duplicates

2



1.2 Music Descriptions

As mentioned, the dataset provides state-of-the-art audio descriptions for each beat of a

given track [2, 3]. Thus, for each track, a sequence of multi-dimensional values is obtained.

The most relevant descriptions are related to pitch, timbre, and loudness. These descriptions

are psychoacoustically-motivated, and its computation includes several steps to mimic the

response of the human ear such as the grouping of energies into perceptually-motivated fre-

quency bands, the consideration of spectro-temporal dynamics, or the application of an outer

and middle ear filter [2]. A general overview of pitch, timbre, and loudness descriptions follows.

Pitch correlates with the periodicity of air pressure fluctuations [4, 5] and is represented by

a real-valued 12-dimensional vector of pitch class relative energies (also called chroma [6, 7]).

Pitch class-based representations are a standard way of describing the relative energy of the

pitches present in an audio frame, and have been key in the development of many applications

dealing with music signals such as the automatic identification of near-duplicate recordings [8],

chord/tonality estimation [9], or music structure segmentation [10]. In such a representation

there is a value between 0 and 1 indicating the degree of absence or presence of each of the

12 pitch classes of the chromatic scale (C, C#, D, D#, etc.). In principle, pitch class-based

representations are assumed to be fairly independent of other musical facets such as timbre,

loudness, or noise [7, 9].

Timbre, sometimes referred to as sound color, texture, or tone quality, mainly correlates

with the spectro-temporal shape of the audio signal [4, 5]. Timbre information of a given

frame or beat is originally provided in the million song dataset as an array of 12 real-valued

numbers. These numbers correspond to the projection of the (Fourier-based) spectro-temporal

representation of the frame’s signal into a set of 12 bivariate basis [2, 3]. These bivariate basis

correspond to “high level abstractions of the spectral surface, ordered by degree of impor-

tance” [3]. This way, the second basis emphasizes sound brightness, the third is correlated to

flatness, the fourth represents sounds with a strong attack, etc. For completeness, the first

basis represents the average loudness [5] of the segment. Therefore, the 12-dimensional vec-

tors can be split into an 11-dimensional timbre component and a unidimensional loudness

(or volume) component. Notice that including the average loudness in the original timbre

representation implies a certain degree of independence of the two components. Since, for

perceptual reasons, the frequency resolution of the spectro-temporal representation is inten-

tionally low [2], the obtained timbre and loudness components can be also assumed to be

quite independent of pitch.
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1.3 Encoding

To facilitate the study of the provided music descriptions, and in order to apply current

methods and concepts from statistical physics and complex networks, we need to encode our

representations into discrete elements [11]. Hence the use of the term codewords to denote our

main analysis units. The most important aspects of the followed encoding are summarized in

Table 1. The details follow.

To ease the interpretation of pitch codewords, we opt for a binary discretization of pitch

descriptions, therefore only accounting for presence or absence of a given pitch class. This way,

12-dimensional descriptions are reduced to 212 = 4, 096 codewords. We use a single threshold

set to 0.5 and map the original pitch vector values to 0 or 1, depending on whether they are

below or above the threshold, respectively. The value of 0.5 is near the mean value of the

considered vector components and other arbitrary numbers close to it provided no apparent

change in the results of our analysis. Binary quantization roughly resembles the all-or-none

behavior of neurons and neuronal ensembles [13]. Furthermore, this encoding method is akin

to methods used, for instance, in automatic audio identification [14] or in cochlear implant

sound processors [15].

Before discretization, pitch descriptions of each track are automatically transposed to an

equivalent main tonality, such that all pitch codewords are considered within the same tonal

context or key. For this process we employ a circular shift strategy [12], correlating (shifted)

per-track averages to cognitively-inspired tonal profiles [16]. This strategy is commonly applied

to pitch class descriptions in many music processing contexts [6, 7], specially in the retrieval

Musical facet Pre-processing Dimensionality Discretization Threshold Value(s)

Pitch Transposition to the same

tonal context [12].

12 real values (be-

tween 0 and 1).

Binary 0.5 (same value for each

dimension).

Timbre Remove the loudness compo-

nent and get a sample of beat-

based timbre descriptions (see

text).

11 real values. Ternary 33 and 66% quantiles

of the extracted sam-

ple (different values for

each dimension).

Loudness Take the loudness compo-

nent from timbre descriptions

and get a sample of beat-

based loudness descriptions

(see text).

1 real value. 300 steps Equal-sized steps in the

range of the extracted

sample.

Table 1: Summary of the encoding process for deriving music codewords from the beat-based

descriptions provided in the million song dataset. In total we have 4,096 possible pitch code-

words, 177,147 possible timbre codewords, and 300 possible loudness codewords.
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of versions of the same musical composition [8] and in automatic chord/key estimation [9].

Compared to pitch, timbre is believed to have a much higher dimensionality, at least

perceptually [4]. To account for this, and also in order to better match the underlying dis-

tribution of the timbre descriptions provided in the million song dataset, we make use of a

ternary, equal-frequency encoding [17], providing a total of 311 = 177, 147 possible timbre

codewords. Thresholds are set to the 33 and 66% quantiles of a representative sample of beat-

based timbre description values6. To construct such sample we randomly chose one million

timbre vectors from the dataset such that a maximum of 8,000 vectors corresponded to the

same year. In this way we controlled that no bias towards a certain year was introduced into

the sample. It is worth noting here that the use of more elaborate discretization techniques,

like vector quantization [18], would rely on predefined distance measures and would require a

high computational load to infer thousands of codewords.

Loudness values are originally provided in decibels (dB), and limited within a range from

0 to 60 [2, 3]. To study their distribution we treat these loudness values directly as a random

variable (see below). Nonetheless, in order to conform to the standard signal processing cri-

terion [19], we subtract the loudness reference of 60 dB used in the million song dataset from

them. This yields values x ∈ [−60, 0] dBFS, where dBFS means full-scale decibels. To study

transitions between loudness values and build a complex network we use an unsupervised

equal-width discretization [17] into 300 equal steps. In preliminary analysis we experimented

with other discretizations (e.g. 200 steps, 300 quantiles), obtaining very similar results.

1.4 Codeword Distributions

1.4.1 Distribution Functions

As mentioned in the main text, three different types of fits are performed: discrete (pure)

power laws, shifted discrete power laws, and truncated reversed log-normals. For the discrete

cases, the random variable takes only integer values, which can represent the frequency of a

codeword or the frequency of a degree k in the network. Then, P (z) is the probability mass

function, and gives the probability that the random variable takes the value z. For the shifted

power law this is given by

P (z) =
1

ζ(β, c+ zmin)(c+ z)β
(1)

with z = zmin, zmin + 1, . . . , where c and β are parameters (β ≥ 1), and zmin is the minimum

value of the variable for which the fit holds. We note that zmin takes integer values and that

fulfills c + zmin > 0. The (pure) power law case is recovered by setting c = 0. The bivariate

6This sample should not be confused with the final sample used for analysis. It is just an initial sample for

obtaining the 33 and 66% quantiles that will allow to threshold the music descriptions.
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function ζ(β, q) is the Hurwitz zeta function,

ζ(β, q) =

∞∑
n=0

1

(q + n)β
, (2)

which yields the Riemann zeta function for q = 1, i.e. ζ(β, 1) = ζ(β). At several points the

procedure will require the computation of the Hurwitz zeta function, which is done by means

of an algorithm based on the Euler-Maclaurin series [20].

For the loudness values (denoted by x), z is a real variable, defined as z = −x, as well

as its minimum and maximum values zmin and zmax. Although we use the same notation as

for discrete variables, for a continuous variable the function P (z) will not be the probability

mass function but the probability density, given in this case by a truncated log-normal,

P (z) =

√
2

πσ2

[
erf

(
ln zmax − µ√

2σ

)
− erf

(
ln zmin − µ√

2σ

)]−1 1

z
exp

(
−(ln z − µ)2

2σ2

)
(3)

with 0 ≤ zmin ≤ z ≤ zmax and where

erf(y) = 2π−1/2
∫ y

0
e−u

2
du (4)

is the error function (implemented as in Press et al. [21]). The adjective ‘reverse’ used in the

main text refers to the fact that P (x) is the mirror image of the true (truncated) log-normal

distribution for the variable z = −x. Note that µ and σ do not correspond to the mean

and standard deviation of the data, but to those of the underlying non-truncated normal

distribution.

1.4.2 Fitting Procedure

The fitting procedure for power laws and log-normals is based on the one by Clauset et

al. [22]. However, we modify the way in which the fitting range is found since that algorithm

was shown to reject the power-law hypothesis for power-law simulated data in some specific

cases [23]. Additional variations are also introduced regarding the discreteness of the variable.

A comprehensive account for the case of the continuous power-law fitting can be found in

Peters et al. [24] (apart from this reference, other details are found in the supplementary

information of Corral et al. [25]).

First, we try a fit in an arbitrary fitting range z ≥ zmin (or zmin ≤ z ≤ zmax, depending

on the distribution). The fitting parameters β and c (or µ and σ) are found by maximum

likelihood estimation, which starts by calculating the log-likelhood function

L =
1

Nm

Nm∑
i=1

lnP (zi), (5)
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where i labels all the Nm values of the variable in the fitting range z ≥ zmin (or zmin ≤
z ≤ zmax). As the fitting range is fixed, the data are fixed too, and the log-likelihood is

only a function of the parameters of the distribution. Its maximization yields their maximum

likelihood estimation.

The second step is to measure the discrepancy between the fit and the data. For that we

use the Kolmogorov-Smirnov (KS) statistic or distance, which yields a measurement of the

separation between the fit and the empirical data [21]. Nevertheless, from this distance alone

we cannot evaluate the goodness of the fit. For that purpose, the third step generates synthetic

datasets in the considered fitting range by computer simulation [26], with the same number of

data Nm as in the original set, and using the parameters obtained for it by maximum likelihood

estimation. The same procedure as the one just explained for that case is applied to each of

these simulated data sets, yielding a series of maximum likelihood estimated parameters,

fitting distributions, and KS distances [22, 27]. It is the latter which allows us to quantify the

value of the empirical KS distance. Indeed, the p−value of the fit will be computed as the

number of simulated data sets with KS distance larger than the empirical one divided by the

total number of simulations.

Up to now we have assumed that the fitting range is fixed. In order to select the best fitting

range we perform the same procedure for a large sample and select the one which contains

the largest number of data Nm, provided that its p−value is above 0.25. This concludes the

procedure.

1.5 Codeword Networks

1.5.1 Network Building

To study the transitions between codewords, we build a complex weighted directed network for

pitch, timbre, and loudness descriptions by representing each codeword by a node and placing

a directed link between any two beat-consecutive codewords (self-links from a codeword to

itself are not considered). Link weights ωij are set to the frequency of occurrence of codeword

transitions (when there is no link between codewords i and j, we set ωij = 0). A preliminary

analysis with pitch networks shows that adjacency matrices are almost symmetric for the

majority of transitions, i.e. ωij ≈ ωji. Link weight correlations for a given network are always

above 0.95, and the average value across all considered years is 0.98± 0.01. Therefore, we can

safely use undirected versions of the networks by removing link directionality and summing

up the weights in the two directions, ωij → ωij + ωji. The fact that transitions between

pitch codewords are symmetric may be surprising at first sight, specially given that transition

asymmetries are present in classical music [28, 29]. However, evidence that such asymmetries

are not present in contemporary popular music has already been reported for a reduced set
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of manually annotated pieces [30]. Our analysis confirms quantitatively the same evidence at

a large-scale for the pitch networks and also for the timbre and loudness ones, a result never

recognized before.

1.5.2 Metrics

In codeword networks of size N , each node i = 1, . . . , N is characterized by its degree ki,

measuring the number of neighbors with other codewords, and its strength si, measuring the

total weight associated with the connections with such neighbors, i.e. si =
∑N

j=1 ωij . However,

when ωij counts the number of transitions between codewords i and j, codeword strength s is

the same as codeword frequency z (except for self-loops), which has already been analyzed in

the previous section and in the main text. This leaves us with the task of studying the bare

network topology. To do so, we use the following metrics.

1. The most fundamental is the degree distribution P (k), measuring the probability that

a randomly chosen node has degree k. This distribution is characterized by its average

degree 〈k〉 and, when the network is scale-free, i.e. P (k) ∝ k−γ , by the critical exponent

γ. In some cases, we use the median of P (k) instead of the average degree as it is a

measure which is independent of the presence and particular value of a few hubs, which

may change from year to year.

2. Correlations between pairs of connected nodes are evaluated with the assortativity co-

efficient normalized with respect to a randomized network, Γ. Specifically,

Γ =
〈kk′〉
〈kk′〉rand

. (6)

In this equation, the term in the numerator is an average taken over pairs of con-

nected nodes in the original network, i.e. 〈kk′〉 =
∑

k,k′ kk
′P (k, k′), where P (k, k′) is the

probability that a randomly chosen link connects two nodes of degrees k and k′. The

denominator is the same average but in a randomized version of the original network.

This randomization is performed by swapping pairs of links chosen at random with the

constraint that multiple links and self-connections are forbidden [31]. Notice that this

procedure preserves nodes’ degrees and, thus, the randomized network obtained can be

considered as the maximally random network with that particular degree distribution.

For a network with nodes’ degrees below the critical value
√
〈k〉N [32], the probability

P (k, k′) for the randomized network factorizes as P (k, k′) = kk′P (k)P (k′)/〈k〉2 and,

therefore, 〈kk′〉rand = 〈k2〉2/〈k〉2. However, scale-free networks with γ < 3 always have

nodes violating this condition. As a consequence, maximally random scale-free graphs

have structural degree-degree correlations that cannot be eliminated [32]. Therefore, Γ

measures not absolute degree-degree correlations but those correlations present in the
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real network with respect to the minimum level of correlations allowed by the degree

sequence. Keeping this in mind, values of Γ > 1 indicate a tendency towards connecting

nodes with similar degrees, a typical pattern of social networks, and values Γ < 1 indi-

cate the tendency of high degree nodes to connect to low degree ones and vice versa, a

pattern usually observed in technological and biological networks [33].

3. The local order of the network is measured by the clustering coefficient C. This coefficient

is obtained as an average of the local clustering coefficient of all nodes of degrees above

1, where the local clustering coefficient of node i, ci is

ci =
2Ti

ki(ki − 1)
(7)

and Ti is the number of triangles attached to node i. Random graphs have a vanishing

clustering coefficient at the limit of very large networks, whereas the majority of real

world networks show very large levels of clustering. In the case of random graphs with

a given degree sequence, it can be shown that C takes the value [33]

C =
〈k(k − 1)〉2

N〈k〉3
. (8)

However, when the network is scale-free, the term in the numerator diverges with the

system size and, for finite networks, C can still take very large values. In such cases, it

is difficult to claim any local ordering of the systems based only upon C. An alternative

approach is to remove the most connected nodes of the network and then re-compute

C in this filtered network. Any local order present in the system will imply high values

of C even for strongly filtered networks.

4. The global properties of the network are probed by means of the average shortest path

length l, which is computed as follows. For each pair of nodes in the network, i and j,

belonging to the same connected component, we find the shortest path between them,

measured in number of network hops lij . The average shortest path length is then

l =
2

Ncc(Ncc − 1)

Ncc∑
i,j=1

lij , (9)

where Ncc is the number of nodes in the largest connected component of the network.

Small-world networks [34] have high levels of clustering (well defined local structure)

and small values of l, typically O(lnNcc).

1.5.3 Analysis Details

Pitch networks The topology of the pitch networks reveals an extremely dense network

with N = 4096 nodes and an exponential degree distribution of average degree 〈k〉 = 271

9



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

s; k

P
c(

s)
; P

c(
k)

 

 

Pc(s)
Fit
Pc(k)

Figure 2: Complementary cumulative distribution functions of strength s and degree k of

nodes in the original pitch network without any filtering procedure applied (data correspond

to the pitch network for the central year 1992). The strength distribution can be fitted by a

function of the form Pc(s) = (1 + s/c)1−β with β = 2.11 and c = 357.14.

as for the year 1992 (Fig. 2). However, the majority of links in this network carry a very

small fraction of the total weight of the system. The complementary cumulative distribution

function of node strength Pc(s) =
∑

s′=s P (s′) spans five orders of magnitude and can be

well fitted by a shifted power law of the form Pc(s) = (1 + s/c)1−β with β ≈ 2.1. Besides,

the strength of a node and its degree are super-linearly correlated (Fig. 3). This implies that

weights are not randomly distributed among the links of the network but are correlated with

the network topology. This observation allows us to apply a sensible filter to the network

topology that, using information associated with the weights, reduces the number of links

keeping only the backbone of the system: the disparity filter [35]. The disparity filter is a local

filter that compares the weights of all links attached to a given node against a null model,

keeping only those links that cannot be explained by the null model under a certain confidence

level. The procedure is repeated twice for each link and the link is finally kept if it is relevant

for at least one of the attached nodes.

To apply the filter, we have to specify the null model. Under the null hypothesis, the

strength of a given node is homogeneously distributed among all its links. Therefore, the

probability that in a node of degree k one link has a fraction u of the node’s strength is

ρ(u) = (k − 1)(1− u)k−2. (10)

A link accounting for a fraction of the total node’s strength is considered relevant if the
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Figure 3: Scattered plot of the strength vs. degree in the original pitch network without any

filtering procedure applied.

probability of observing such value under the null model is smaller than α, where 1−α is the

confidence level. Therefore, a link of weight ωij attached to two nodes of degrees ki and kj

and strengths si and sj will be preserved iff

(ki − 1)

∫ 1

ωij/si

(1− u)ki−2du < α (11)

or

(kj − 1)

∫ 1

ωij/sj

(1− u)kj−2du < α. (12)

Fig. 4 shows the effect of applying the disparity filter with different values of α. As can

be seen, the degree distribution changes very quickly from an exponential distribution with

an extremely high average degree to a scale-free distribution with a stable exponent around

γ ≈ 2.2. Interestingly, the filter does not significantly affect the strength distribution. In the

article, we consider always filtered pitch transition networks with α = 0.01, corresponding to

a confidence level of 99%, which results in a scale-free network of average degree 〈k〉 ≈ 12.

The value of the exponent γ makes this network very heterogeneous. Thus, as explained

previously in Sec. 1.5.2, properties such as clustering or assortativity may be strongly affected.

To distinguish real trends from effects purely induced by heterogeneity, we remove the 10 most

connected nodes in the original network. Clustering and assortativity are then measured in
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Figure 4: Applying the disparity filter to pitch networks: (a) Complementary cumulative

degree distribution Pc(k) =
∑

k′=k P (k′) of filtered networks for different values of α. This

distribution becomes a power law with a stable exponent γ − 1 ≈ 1.2, even for very large

values of α. (b) Interestingly, the filter does not significantly affect the strength distribution

Pc(s).
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both versions of the network (Figs. 7 and 8). This analysis confirms the clustered nature of

the pitch transition network and its disassortative character.

Timbre networks Timbre transition networks are sparse networks with N ≈ 175, 000

nodes and average degree 〈k〉 ≈ 12. Most network weights are very small (typically 1 or

2), so they do not carry relevant information. Because of such sparseness and the absence

of relevant information in the link weights, the application of the disparity filter to timbre

networks was deemed unnecessary. Besides, the critical value
√
〈k〉N defining the onset of

structural correlations is larger than the maximum degree observed in the network, meaning

that network heterogeneity is not a key aspect of the network topology.

Loudness networks After applying the disparity filter with α = 0.01 to loudness networks

we usually obtain N ≈ 250 nodes and average degrees 〈k〉 ≈ 13.5. The disparity filter was

necessary here since, as with the case of pitch, the network was very dense and the majority

of links carried a very small fraction of the total weight of the system. The degree distribution

is close to a homogeneous distribution, with degrees ranging from k = 2 to k = 20, similar

to what would happen in a disordered lattice embedded in a low dimensional space. This is a

direct consequence of loudness being a one-dimensional quantity.

1.6 Linear Regressions

To assess trends in parameters and metrics over the years, we perform an ordinary least

squares linear regression [36, 37] and report the slope found (Table 2). Statistical significance

is evaluated under the null hypothesis that the slope is different from zero, using a two-tail

t-test and p < 0.01 (if p > 0.05 we deem the slope not statistically significant).

Musical facet Variable Slope p-value t-statistic R2 Significant

Pitch β 0.002 0.097 1.66 0.005 No

Loudness median(x) 0.131 2.4 · 10−96 25.84 0.554 Yes

Loudness |Q1(x)−Q3(x)| 0.002 0.321 0.99 0.002 No

Table 2: Summary of the linear regressions mentioned in the main text.
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Figure 6: Pitch transition networks. (a) Examples of the degree distribution P (k) and its

fitted power law. For ease of visualization, curves are chronologically shifted by a factor of 10

in the horizontal axis. (b) Degree distribution exponents γ.
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Figure 7: Pitch transition networks. Average shortest path length l versus clustering coefficient

C for pitch networks. Arrows indicate chronology (red and blue colors indicate values for more

and less recent years, respectively). Results considering all nodes of the network, including

the 10 biggest hubs (see Materials and Methods).
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Figure 8: Pitch transition networks. Assortativeness with respect to random Γ with (a) and

without (b) the 10 biggest hubs (see Materials and Methods). As mentioned in the main text

and in Sec. 1.5.2, a value of Γ < 1 indicates that well-connected nodes (codewords) are less

likely to be connected among them.
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Figure 9: Timbre codeword distributions. Fitted parameters c (a) and zmin (b). The fits for

the exponent β were depicted in the main text.
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Figure 10: Timbre transition networks. (a) Examples of the degree distribution. For ease of

visualization, curves are chronologically shifted by a factor of 10 in the horizontal axis. (b)

Average shortest path l versus clustering coefficient C. Red and blue colors indicate values for

more and less recent years, respectively. Notice the small range of C, which is always below

0.01. (c) Assortativeness with respect to random Γ.
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Figure 11: Loudness distributions. Fit parameters µ (a), σ (b), zmin (c), and zmax (d).
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Figure 12: Loudness networks. (a) Examples of the degree distribution for loudness networks.

For ease of visualization, curves are chronologically shifted by a factor of 10 in the horizontal

axis. (b) Average shortest path l versus clustering coefficient C. Red and blue colors indicate

values for more and less recent years, respectively. (c) Assortativeness with respect to random

Γ.
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[12] Serrà, J., Gómez, E. & Herrera, P. Transposing chroma representations to a common key.

In Proc. of the Int. CS Conf. on the Use of Symbols to Represent Music and Multimedia

Objects, 45–48 (2008).

20



[13] Bethge, M., Rotermund, D. & Pawelzik, K. Second order phase transition in neural rate

coding: binary encoding is optimal for rapid signal transmission. Physical Review Letters

90, 088104 (2003).

[14] Haitsma, J. & Kalker, T. A highly robust audio fingerprinting system. In Proc. of the

Conf. on Music Information Retrieval (ISMIR), 107–115 (2002).

[15] Wilson, B. S. et al. Better speech recognition with cochlear implants. Nature 352,

236–238 (1991).

[16] Krumhansl, C. L. Cognitive foundations of musical pitch (Oxford University Press, Ox-

ford, UK, 1990).

[17] Cios, K. J., Pedrycz, W., Swiniarski, R. W. & Kurgan, L. A. Data mining: a knowledge

discovery approach (Springer, Berlin, Germany, 2007).

[18] Linde, Y., Buzo, A. & Gray, R. An algorithm for vector quantizer design. IEEE Trans.

on Communications 28, 84–95 (1980).

[19] Oppenheim, A. V., Schafer, R. W. & Buck, J. R. Discrete-time signal processing

(Prentice-Hall, Upper Saddle River, USA, 1999), 2nd edn.

[20] Vepstas, L. An efficient algorithm for accelerating the convergence of oscillatory series,

useful for computing the polylogarithm and Hurwitz zeta functions. Numerical Algo-

rithms 47, 211–252 (2008).

[21] Press, W. H., Teukolsky, S. A. & Vetterling, W. T. Numerical recipes in Fortran (Cam-

bridge University Press, Cambridge, UK, 1992).

[22] Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical

data. SIAM Review 51, 661–703 (2009).

[23] Corral, A., Font, F. & Camacho, J. Non-characteristic half-lives in radioactive decay.

Physical Review E 83, 066103 (2011).

[24] Peters, O., Deluca, A., Corral, A., Neelin, J. D. & Holloway, C. E. Universality of rain

event size distributions. Journal of Statistical Mechanics: Theory and Experiment 2010,

P11030 (2010).
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