
Supplementary Methods

Further information and details about the model and the methods described in the main test are
provided. Section I details the analytical results that can be obtained for the model presented
in the paper. For the sake of completeness, some details discussed in the main text are repro-
duced. Section II discusses the method used to infer the value of α via the triangle inequality test.
Section III compares the predictions of our model with other models proposed in the literature.

I. FURTHER DETAILS ON THE MODEL

Our model is a non-trivial generalization to weighted networks of a class of random networks
with hidden variables embedded in a metric space [1]. In this model, N nodes are uniformly
distributed with density δ in a D-dimensional homogeneous and isotropic metric space, and are
assigned a hidden variable κ according to the probability density function (pdf) ρ(κ). Two nodes
with hidden variables κ and κ′ separated by a metric distance d are connected with a probability

p(κ, κ′, d) = p(χ) where χ =
d

(µκκ′)1/D
, (1)

where µ > 0 is a free parameter and p(χ) is an arbitrary positive function taking values within
the interval (0, 1). Whenever the integral

∫∞
0 χD−1p(χ)dχ is bounded, the free parameter µ can be

chosen such that k̄(κ) = κ. Hence, κ corresponds to the expected degree of nodes, so the degree
distribution can be specified through the pdf ρ(κ)

P (k) =
1

k!

∫
e−κκkρ(κ)dκ , (2)

regardless of the specific form of p(χ) (see Secs. I A 1 and I A 2 below for details). The freedom in
the choice of p(κ, κ′, d) allows us to tune the level of coupling between the topology of the networks
and the metric space, which in turn allows us to control many properties such as the clustering
coefficient and the navigability [1, 2]. Moreover, the form of the connection probability in Eq. (1)
implies that networks generated with this model are small worlds for any heterogeneous pdf ρ(κ)
since high degree nodes are then likely to be connected regardless of the metric distance between
them [1, 3].

To generalize this model to weighted networks, a second hidden variable σ is associated to each
node. This new hidden variable can be correlated with κ so, hereafter, we assume that the pair of
hidden variables (κ, σ) associated with the same node are drawn from the joint pdf ρ(κ, σ). The
weight of an existing link between two nodes with hidden variables κ, σ, κ′ and σ′, respectively,
and at a metric distance d is distributed according to the pdf

φ(w|κ, σ, κ′, σ′, d) =
1

w̄
f
(w
w̄

)
, (3)

where f(ε) is any probability density function in the domain [0,∞), and where

w̄ =
νσσ′

(κκ′)1−α/Ddα
, (4)

with ν > 0 and 0 ≤ α < D. The particular form of the distribution of weights Eq. (3) implies that
the weight between nodes i and j can be written as

ωij = εij
νσiσj

(κiκj)1−α/Ddαij
(5)
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where εij is a random variable drawn from the pdf function f(·). Equations (3) and (4) constitute
the keystone of our model. Indeed, as shown in Sec. I A 3 below, the form of Eq. (4) is the
only ensuring that s̄(σ) = σ, provided that the integral

∫∞
0 χD−α−1p(χ)dχ converges. The new

hidden variable σ can therefore be interpreted as the expected strength of a node, and the joint
pdf ρ(κ, σ) = ρ(κ)ρ(σ|κ) controls the correlation between degrees and strengths in the network.
Indeed, as shown in Sec. I A 4 below, the average strength of nodes with a given degree, s̄(k), relates
to the first moment of the conditional pdf ρ(σ|κ), σ̄(κ), through the relation

s̄(k) =
1

(k − 1)!P (k)

∫
e−κκk−1ρ(κ)σ̄(κ)dκ . (6)

Therefore, when limκ→∞ σ̄(κ) = ∞ then s̄(k) ∼ σ̄(κ). This limit stands as a good approximation
for the behaviour of high degree nodes in real weighted networks.

Remarkably, these relations hold independently of the specific form of the connection probability
p(χ) and of the distribution of weights f(ε), thus conferring great versatility to our model. Even
more remarkable, the shape of the connection probability p(χ) and the value of the parameter α—
coupling topology and weights to the metric space—do not affect the relations k̄(κ) = κ and s̄(σ) =
σ and, therefore, the join degree-strength distribution P (k, s). This property conveys a degree of
control over the weight distribution as well as over the disparity of nodes which is independent of
the specification of degrees and strengths and, more importantly, opens the possibility to measure
the metric properties of complex weighted networks.

A. Theoretical calculations in a D-dimensional metric space

Most of the theoretical calculations for the model are carried out using the probability density
function (pdf) g(k, s|κ, σ) corresponding to the probability that a node with hidden variables κ
and σ has a degree equal to k and a strength in the interval [s, s + ds). To compute this pdf, we
first consider a pair of nodes whose positions in space are xi and xj and whose hidden variables
are κi, σi and κj , σj , respectively. The pdf for the weight wij between these two nodes (wij = 0
means that there is no link) is

Φ(wij |κi, σi;κj , σj ; dij) = [1− p(κi, κj , dij)]δ(wij)
+ p(κi, κj , dij)φ(wij |κi, σi, κj , σj , dij)Θ(wij) , (7)

where δ(·) is the Dirac delta function and Θ(·) is the left-continuous Heaviside step function [i.e.,
Θ(0) = 0]. Without loss of generality, we take the perspective of node i, place it at the origin of
the coordinate system, and integrate over the possible values of the hidden variables of node j

Φ(wij |κi, σi) =

∫∫∫
ρ(κj , σj)

VD
Φ(wij |κi, σi;κj , σj ; dij)dxjdσjdκj . (8)

In this last equation, 1/VD is the (uniform) pdf for the position of nodes in the metric space. This
last expression does not depend on the position of node i due to the isotropy, homogeneity and
large size (N � 1) of the metric space. Note that for mathematical convenience, we consider the
metric space to be a D-dimensional sphere of radius R. However, the constraint of having constant
density implies that the radius diverges in the thermodynamic limit and, thus, the metric space
is equivalent to a D-dimensional Euclidean space. Because the weights {wij}i,j=1,...,N are assigned
independently in the model, the probability that a node has a degree ki and a strength si is equal
to the product of the contribution of each potential N − 1 links, given that the number of existing
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links is equal to ki and that their weights sum up to si

g(ki,si|κi, σi) =
∏
j

[∫
Φ(wij |κi, σi)dwij

]
δ

(
ki −

∑
l

Θ(wil)

)
δ

(
si −

∑
l

wil

)
. (9)

Although it is not possible to further the calculation and obtain a closed form the the pdf
g(k, s|κ, σ), many useful results can be obtained using its generating function defined as

ĝ(x, y|κi, σi) =
N−1∑
ki=0

∫ ∞
0

g(ki, si|κi, σi)xkie−siydsi , (10)

which, dropping the subscripts i and j, can be written as

ĝ(x, y|κ, σ) =

[∫∫∫
ρ(κ′, σ′)

VD

{
[1− p(κ, κ′, d)]

+ p(κ, κ′, d)x

∫
φ(w|κ, σ, κ′, σ′, d)e−wydw

}
dx′dσ′dκ′

]N−1

. (11)

1. The degree of nodes

From Eq. (11), we can readily see that the average degree of nodes with hidden variables κ and
σ only depends on κ [4]

k̄(κ, σ) =
∂ĝ(x, y|κ, σ)

∂x

∣∣∣∣
x=1,y=0

=
N − 1

VD

∫∫∫
ρ(κ′, σ′)p(κ, κ′, d)dx′dσ′dκ′

= δ

∫∫
ρ(κ′)p(κ, κ′, d)dx′dκ′ , (12)

where ρ(κ) is the marginal pdf of ρ(κ, σ), and where δ ≡ N/VD is the density of nodes in the
metric space (we consider here that N � 1). Using the definition of p(κ, κ′, d) given in Eq. (1)
and switching to D-dimensional spherical coordinates (ΩD is the solid angle subtended by a D-
dimensional object), this last equation becomes

k̄(κ) = δ

∫∫∫
ρ(κ′)p(χ)rD−1drdΩDdκ

′

=
2πD/2δµ

Γ(D/2)
κ

∫
κ′ρ(κ′)dκ′

∫
χD−1p(χ)dχ

=
2πD/2δµ〈κ〉I1

Γ(D/2)
κ , (13)

where we have noted 〈κ〉 =
∫
κρ(κ)dκ and I1 =

∫
χD−1p(χ)dχ. The average degree for the whole

network is

〈k〉 =

∫
k̄(κ)ρ(κ)dκ =

2πD/2δµI1

Γ(D/2)
〈κ〉2 . (14)
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Consequently, we see that the free parameter µ can be chosen such that k̄(κ) = κ and 〈k〉 = 〈κ〉,
that is

µ =
Γ(D/2)

2πD/2δI1〈κ〉
. (15)

The degree distribution of the networks generated by the model can therefore be controlled through
the pdf ρ(κ). Following similar steps, we also find that

Var[k(κ)] = k̄(κ) , (16)

which implies that

√
Var[k(κ)]

k̄(κ)
=

1√
κ
, (17)

where we used k̄(κ) = κ. In other words, nodes with a same high value of their hidden variable κ
tend to all have a degree close to the expected value k̄(κ) = κ.

2. The degree distribution

By definition, evaluating Eq. (11) at y = 0 yields the generating function for the degree distri-
bution of nodes with hidden variable κ

ĝ(x, 0|κ, σ) ≡
∑
k

g(k|κ)xk . (18)

Assuming N � 1 and using Eq. (12), we obtain

ĝ(x, 0|κ, σ) =

[
1 + (x− 1)

k̄(κ)

N − 1

]N−1

= exp
{

(x− 1)k̄(κ)
}

=
∑
k

e−k̄(κ)k̄(κ)k

k!
xk . (19)

In other words, the degrees of nodes with hidden variable κ follow a Poisson distribution with mean
k̄(κ) [4]. Using k̄(κ) = κ, the degree distribution of the whole network is therefore

P (k) =

∫
g(k|κ)ρ(κ)dκ

=
1

k!

∫
e−κκkρ(κ)dκ , (20)

thus unveiling the precise link between ρ(κ) and P (k).
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3. The strength of nodes

Following similar steps as in Sec. I A 1 above, we can compute the average strength of nodes
with hidden variables κ and σ

s̄(κ, σ) = − ∂ĝ(x, y|κ, σ)

∂y

∣∣∣∣
x=1,y=0

= δ

∫∫∫
ρ(κ′, σ′)p(κ, κ′, d)

∫
wφ(w|σ, σ′, d)dwdx′dσ′dκ′

=
2πD/2δµ1−α/DνI2

Γ(D/2)
σ

∫
σ′ρ(σ′)dσ′

∫
χD−α−1p(χ)dχ

=
2πD/2δµ1−α/DνI2〈σ〉I3

Γ(D/2)
σ , (21)

where ρ(σ) is the other marginal pdf of ρ(κ, σ), and where we have noted 〈σ〉 =
∫
σρ(σ)dσ,

I2 =
∫
wf(w)dw, and I3 =

∫
χD−α−1p(χ)dχ. We therefore conclude that the strength of nodes

only depends on σ, hence s̄(κ, σ) = s̄(σ). The average strength for the whole network is

〈s〉 =

∫
s̄(σ)ρ(σ)dσ

=
2πD/2δµ1−α/DνI2I3

Γ(D/2)
〈σ〉2 . (22)

As for the average degree, we see that we can set the free parameter ν such that s̄(σ) = σ and
〈s〉 = 〈σ〉, that is

ν =
Γ(D/2)

2πD/2δµ1−α/DI2I3〈σ〉
. (23)

The strength distribution of the networks generated by the model can therefore be controlled
through the pdf ρ(σ). Following similar steps, we find that

Var[s(κ, σ)] = δ

∫∫∫
ρ(κ′, σ′)p(κ, κ′, d)

∫
w2φ(w|σ, σ′, d)dwdx′dσ′dκ′

=
2πD/2δµ1−2α/Dν2I4〈σ2/κ〉I5

Γ(D/2)

σ2

κ
, (24)

where we have noted 〈σ2/κ〉 =
∫∫

(σ2/κ)ρ(κ, σ)dσdκ, I4 =
∫
w2f(w)dw and I5 =

∫
χD−2α−1p(χ)dχ.

Setting µ such that 〈k〉 = 〈κ〉 [see Eq. (14)], we find that√
Var[s(κ, σ)]

s̄(σ)
=

√
κ̄〈σ2/κ〉I1I4I5

〈σ〉I2I3

1√
κ
, (25)

i.e., the strength of high-degree nodes is close to its expected value given by Eq. (21).

4. The strength of nodes of degree k

Unfortunately, it is not possible to obtain a general closed form of the pdf g(s|κ, σ), similar to
Eq. (19), from Eq. (11). We can however characterize the strengths of nodes through the average



6

10
0

10
1

10
2

10
3

k

10
-4

10
-2

10
0

P
c(k

)

Numerical simulations
Eq. (33)

10
0

10
2

10
4

10
6

10
8

κ, σ

10
0

10
2

10
4

10
6

10
8

k(κ)
s(σ)

10
2

10
4

10
6

s

10
-4

10
-2

10
0

P
c(s

)

Numerical simulations

s
1-ξ

with ξ=1.93

10
0

10
1

10
2

10
3

k

10
2

10
4

10
6

s(
k)

Numerical simulations
Eq. (35)

a b

c d

SUPPLEMENTARY FIGURE 1. Validation of the theoretical calculations The theoretical calculations
are given in Sec. I B, and the numerical simulations correspond to a single network of size N = 104 and
parameters α = 0.4, β = 1.5, γ = 2.4, η = 1.5, 〈k〉 = 20, κc = κ0N

1/(γ−1), a = 100, and noise 〈ε2〉 = 1.5. a,
complementary cumulative degree distribution compared with the prediction given by Eq. (33). b, average
degree and average strength of nodes as a function of their hidden variables κ and σ. The deviation for high
κ and σ is due to the finite size of the network and disappears as N → ∞. c, complementary cumulative
strength distribution. The dashed line indicates a scaling ∝ s−ξ with ξ = (γ+ η− 1)/η ' 1.93, as expected.
d, average strength as a function of degree. The dashed line shows the prediction of Eq. (35).

strength of nodes with a given degree, s̄(k). Let us first explicit its calculation

s̄(k) =

∫
sg(s|k)ds

=
1

P (k)

∫
sg(k, s)ds

=
1

P (k)

∫∫ [∫
sg(k, s|κ, σ)ds

]
ρ(κ, σ)dσdκ . (26)

From Eq. (10), we see that the integral in brackets can be obtained from Eq. (11)

− ĝ(x, y|κ, σ)

∂y

∣∣∣∣
y=0

=
∑
k

[∫
sg(k, s|κ, σ)ds

]
xk . (27)
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SUPPLEMENTARY FIGURE 2. Effect of the underlying geometry on the weights Simulations
correspond to synthetic networks with the same parameters as in Supplementary Figure 1 but with two
different values of the coupling parameter α. a, complementary cumulative weight distribution for α = 0
(no coupling with the hidden metric space) and α = 0.95 (strong coupling). b, average disparity of nodes
as a function of their degree for the same values of the coupling α. The dashed line shows the scaling k−1,
corresponding to the a perfect equipartition of the strength of a node among its links.

Assuming N � 1 and using Eqs. (13) and (21), we find

− ĝ(x, y|κ, σ)

∂y

∣∣∣∣
y=0

= xs̄(σ)

[
1 + (x− 1)

k̄(κ)

N − 1

]N−2

= xs̄(σ)exp
{

(x− 1)k̄(κ)
}

=
∑
k>0

[
s̄(σ)e−k̄(κ)k̄(κ)k−1

(k − 1)!

]
xk . (28)

Excluding the case k = 0 in this last expression is not problematic since g(s|0) = δ(s), by definition,
and therefore the coefficient in front of x0 must be zero [see Eq. (27)]. Combining Eqs. (26)–(28),
k̄(κ) = κ and s̄(σ) = σ, we obtain

s̄(k) =
1

(k − 1)!P (k)

∫∫
σe−κκk−1ρ(κ, σ)dσdκ

=
1

(k − 1)!P (k)

∫
e−κκk−1ρ(κ)σ̄(κ)dκ . (29)

thus further clarifying how the joint pdf ρ(κ, σ) controls the correlation between the degree and
the strength of nodes. In fact, assuming no correlation, i.e., ρ(κ, σ) = ρ(κ)ρ(σ), yields s̄(k) = 〈σ〉,
which is independent of the degree, as expected.

B. Validation of the theoretical calculations

All results presented in the previous section hold in arbitrary dimension and for any form of the
connection probability p(χ) and weight probability density f(ε) in Eqs. (1) and (3). To validate
the theoretical calculations, we particularize to the S1 model as generator of the topology [1].
In that model, we choose the circle S1 of radius R = N/2π to be the underlying geometry over
which nodes are uniformly distributed with density δ = 1. Distances among nodes are measured in
terms of arc lengths, that is, two nodes with angular positions θ and θ′ are therefore at a distance
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d(θ, θ′) = R∆θ where ∆θ = π − |π − |θ − θ′||. The connection probability is set to

p(χ) =
1

1 + χβ
with χ =

d

µκκ′
, (30)

where β > 1 is a free parameter that can be used to tune the clustering. Equation (30) casts the
ensemble of networks generated by the model into exponential random networks [5], i.e., networks
that are maximally random given the constraints imposed by the free parameters (that is, ρ(κ)
and β). To obtain a scale-free degree distribution, hidden variables κ are distributed according to

ρ(κ) =
(γ − 1)κγ−1

0 κ−γ

1− (κc/κ0)1−γ (31)

with κ0 < κ < κc and γ > 1. Notice that by keeping the explicit dependence in the upper cut-off
it is possible to model networks with γ < 2 and a hard cut-off, as found for instance in airports
networks [6]. Moreover, since it is generally more convenient to fix the average degree 〈k〉 explicitly,
we choose κ0 such that

〈κ〉 =

∫ κc

κ0

κρ(κ)dκ =
(γ − 1)κ0

(γ − 2)

1− (κc/κ0)2−γ

1− (κc/κ0)1−γ = 〈k〉 , (32)

and fix the remaining free parameters κc and γ externally. From Eq. (2), we expect

P (k) =
(γ − 1)κγ−1

0

1− (κc/κ0)1−γ
Γ(k − γ + 1, κ0, κc)

k!
∼ (γ − 1)κγ−1

0 k−γ

1− (κc/κ0)1−γ ∼ k
−γ , (33)

where Γ(x, κ0, κc) is the generalized incomplete gamma function. It is defined as Γ(t, z0, z1) =∫ z1
z0
zt−1e−zdz (the regular complete and incomplete gamma functions can be retrieved by setting

the bounds z0 and z1 to the appropriate values). Whenever 1 ∼ z0 � z1, a condition holding
for most realistic degree distributions, the double incomplete gamma function scales as Γ(n +
ε, κ0, κc) ∼ Γ(n)nε with n ∈ N and ε ∈ R [7]. Note also that it is common to set κc = κ0N

1/(γ−1),
i.e., the natural cut-off of a scale-free distribution [8, 9]. However, in general κc can take any value
in response to particular mechanisms at play, like the limited capacity to handle more than a given
number of connections in the airports network.

To assign weights on top of the topology generated by the model, the noise distribution in
Eq. (3) is chosen to be a gamma distribution of average 〈ε〉 = 1, that is,

f(ε) =
λλ

Γ(λ)
ελ−1e−λε with 〈ε2〉 = 1 +

1

λ
. (34)

This particular choice allows us to interpolate with a single parameter between a zero noise limit
when λ � 1, exponential noise when λ = 1, and strongly heterogeneous noise when λ � 1.
Finally, to control the correlation between strength and degree and, therefore, to tune the strength
distribution, we assume a deterministic relation between hidden variables σ and κ of the form
σ = aκη, as observed in real complex networks [6]. From Eq. (6), we thus expect

s̄(k) =
akΓ(k − γ + η, κ0, κc)

Γ(k − γ + 1, κ0, κc)
∼ akη . (35)

Notice that the relation between average strength and degree in the previous expression is totally
independent of the underlying metric space. It implies that the strength distribution scales as
P (s) ∼ s−ξ for s� 1 with ξ = (γ + η− 1)/η. Supplementary Figure 1 shows the basic topological
and weighted properties of a network generated using Eqs. (30)–(35) and compares them to the
theoretical predictions presented in this section. Apart from some expected fluctuations due to
finite size, the agreement between the two is excellent.
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C. The effect of the underlying geometry

Geometry has a strong effect on the strength and weight distributions, which depend on the
coupling parameter α. In fact, as shown in Sec. I A 3, the second moment of the strength distri-
bution 〈s2〉 is proportional to the integral

∫∞
0 χD−2α−1p(χ)dχ, which diverges whenever α > D/2.

The origin of these fluctuations is rooted in the strong constraints that geometry imposes on the
weights of individual links. In the absence of coupling (i.e., α = 0.0) the metric distance between
nodes does not influence the magnitudes of the weights. Consequently, the distribution of weights
generated by the model is the original pdf in Eqs. (3) and (4) convoluted with the distribution of
values of the ratio σσ′/κκ′. Conversely, in the case of strong coupling (i.e., α . 1), short range
links are constrained to have larger weights whereas long range ones have small weights. This
effect increases the heterogeneity in the weight distribution and causes the divergence of 〈s2〉 when
α > D/2. Supplementary Figure 2a shows this effect on synthetic networks generated with the
model with identical parameters except for the value of α.

The same effect is visible in the local heterogeneity of the weights attached to a given node. To
characterize such heterogeneity, we use the disparity measure defined as

Yi =
∑
j

(
wij
si

)2

, (36)

where wij is the weight of the link between nodes i and j (wij = 0 if there is no link) and
si =

∑
j wij [10]. In Supplementary Figure 2b, we see that in the absence of coupling (i.e.,

α = 0.0) the disparity scales as Yi ∼ k−1
i corresponding to the situation in which weights are

roughly homogeneously distributed among the links [11]. On the other side of the spectrum, we
see that under maximal coupling (i.e., α . 1), the disparity decreases slower than k−1

i meaning
that weights are heterogeneous and that the large strength of nodes is due to a handful of links
with large weights.

II. TEST OF THE TRIANGLE INEQUALITY

To test the triangle inequality in a given weighted complex network, we first find the parameters
µ, β, and γ that best match the empirical topology. To achieve the optimal matching, we use the
empiric sequence of degrees as input for the sequence of κ’s so that the fluctuations in the tail of
the degree distribution of the input network are preserved. The sequence is then used to generate
different weighted networks as follows. From the empiric relation strength-degree, we measure the
proportionality factor a and the exponent η, as well as the first and second moments of the strength
distribution 〈s〉 and 〈s2〉. For fixed values of α and of the fluctuations of the pdf function f(·),
I4 = 〈ε2〉, we generate a large number of synthetic weighted networks and measure the average
value of CV 2(s) = Var[s2]/〈s〉2 and its ensemble fluctuations. From Sec. I A 3, we expect the
average value of CV 2(s) to scale linearly with 〈ε2〉 as

CV 2(s) =
〈s2〉
〈s〉2 − 1 =

Γ(D/2)〈σ2/κ〉2I5

2πD/2δµ〈σ〉4I2
2I

2
3

〈ε2〉 . (37)

The left hand side in this equation can be directly measured from the network. The right hand
side depends linearly on the noise 〈ε2〉 whereas its pre-factor depends both on the topology and on
αreal through the integrals I3 and I5 (see Sec. I for technical details).

In Supplementary Figure 3a, we show CV 2(s) as a function of 〈ε2〉 and different values of α
for one of the synthetic networks used in Supplementary Figure 4 with αorigin = 0.4 and noise
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SUPPLEMENTARY FIGURE 3. Illustration of the test of the triangle inequality Test of the triangle
inequality applied to a synthetic network generated with αorigin = 0.4 and noise 〈ε2〉origin = 1.5. a, the square
of the coefficient of variation of nodes’ strength as a function of the noise 〈ε2〉 in synthetic weighted networks
with different values of α. The horizontal dashed line is the empirical value measured in the input network.
b, values of α∗ as a function of the noise obtained from the intersection of the dashed line in a with the
synthetic curves. c, TIV (α) curves for synthetic networks with the values of α∗ and 〈ε2〉 from b compared to
the same function for the input network. d, χ2 statistics obtained from the comparison of function TIV (α)
between the model and input network.

〈ε2〉origin = 1.5. The intersection of these curves with the empirical value of CV 2(s) defines a
collection of α’s as a function of the noise, α∗

(
〈ε2〉

)
, which become the potential candidates to

be the estimate of αreal (see Supplementary Figure 3b). Finally, for each pair (〈ε2〉, α∗) in Sup-
plementary Figure 3b we measure the function TIV (α) and compare it with the same function
measured in the input network (see Supplementary Figure 3c). The comparison is performed
by measuring the standard χ2 statistics. The inferred value of αreal corresponds to the value of
α∗(〈ε2〉) minimizing the value of χ2 (see Supplementary Figure 3d). To find a lower bound of
the inferred value of αreal, we use the ensemble fluctuations of CV 2(s). For any fixed value of
〈ε2〉, the lower bound of α∗ is the value of α that is still able to reproduce the empirical value of
CV 2(s) (see Supplementary Figure 3b). The lower bound for the inferred value of αreal is the lower
bound of α∗ that corresponds to the optimal value of the noise 〈ε2〉 in Supplementary Figure 3d.
Supplementary Figure 4 shows the result of this method in the case of synthetic networks with
different values of α and noise levels. As it can be seen, the inferred values of α match the true
values in most of the cases. In fact, these fluctuations are due to the fact that the noise measured
in the original synthetic network does not necessarily equal the typical noise of the ensemble of
networks generated using the same parameters. Our method also allows us to find lower bounds on
the inferred values, as shown by the grey areas in Supplementary Figure 4. The most remarkable
aspect of the test is that it can be performed without any explicit embedding of the network and,
thus, it can be readily applied to real networks for which an embedding is not available.
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SUPPLEMENTARY FIGURE 4. Validation of the test of the triangle inequality αreal vs. αorigin

for synthetic networks generated with the model for different values of noise 〈ε2〉. In all cases, network
topologies are generated with γ = 2.5, β = 2, η = 1.2, 〈k〉 = 10, and N = 104. The solid grey area indicates
the lower bounds found by the method.

A. Violation of the triangle inequality

We expect the violation of the triangle inequality to depend essentially on the level of noise in the
system 〈ε2〉 through the term in the right hand side of Eq. (7) in the main text. To a lesser extent,
the violation may also be due to the fact that the hidden variables κ and σ are approximated by the
actual degree and the strength, respectively, of nodes. For most of the analysed real networks, the
percentage of violations is very small (of the order of few percent) whereas in the case of the cargo
ships network it is close to 20%, due to the high level of noise present in the system. In short, our
model predicts that there should not be any dependence on the degree in the nodes belonging to
triangles that violate the triangle inequality. To test this prediction, we have measured explicitly
the average degree of such nodes as compared to the average degree of nodes in all triangles (see
Supplementary Figure 5). In many cases the average degree is very similar, thus confirming our
prediction. The largest discrepancy is found in the metabolic network. However, notice that
this network has a very small percentage of violations, which makes it more prone to statistical
fluctuations.

B. Behaviour of TIV (α) with α ∼ 1

The increase of TIV (α) close to α = 1 on Supplementary Figure 3 and on Figs. 3a–b in the
main text is expected and is in fact an artefact of Eq. (5) and of our our choice of the probability of
connection [i.e., Eq. (30)]. Indeed, substituting Eq. (23) in Eq. (7) in the main text and neglecting
the noise term (whose mean value is close to zero) we obtain

ln

[
ωijωjk
ωik

(
κj
σj

)2
]
≤ R

2
α+ ln

(
sin

[
(1− α)π

β

])
+ ln

(
β

2πµ〈σ〉

)
. (38)

Supplementary Figure 6 shows the behaviour of α-dependent terms of the right hand side of Eq. (38)
for the real networks considered in the main text. For the low values of α, we see that the right
hand side of Eq. (38) is an increasing function which implies that TIV (α) decreases with increasing
α (i.e., it is more and more difficult to violate the triangle inequality as α increases). However, all
curves reach a plateau at α ' 0.8 after which they start to decrease. As expected, these plateaus
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SUPPLEMENTARY FIGURE 5. Further properties of triangles Average degree of nodes in triangles
that violate the triangle inequality (〈k〉TIV) and in all triangles (〈k〉Triangle) for the networks considered in
the main text. The average is performed by sampling over triangles which implies that the degree of a node
is weighted by the number of triangles to which it participates (as in Fig. 1 of the main text). The dashed
line shows the fraction of triangles that violate the triangle inequality when using the inferred value αreal.

correspond to the points where the TIV (α) start to increase (for some networks this increase is
not visible due to the linear scale of the y axis).

C. Application to real networks

We applied this methodology to the real networks mentioned in the paper and Supplemen-
tary Table 1 shows the parameters thus inferred (see also Fig. 3 in the main text). The comparison
between the properties of networks generated using these parameters with the ones of the original
real networks is shown on Supplementary Figures 7–12. Besides some expected fluctuations inher-
ent to the model (i.e., only one synthetic network is used for each figure), these figures confirm
that the model can reproduce many topological and weighted features observed in real complex
networks.

III. COMPARISON WITH OTHER MODELS

We present further evidence to support the claim that our model is the most accurate approach
to model real weighted complex networks. To do so, we show the results obtained by using the two
models introduced in Refs. [6] and [12], as well as a new one that generalizes them. These models use
the original network topology randomized under the constraints of preserving the degree sequence
and the average clustering coefficient using the software developed in Refs. [13, 14]. Weights are
then assigned to each link according to the following rules:

• model A: wij ∝ (kikj)
θ, where ki and kj are the degrees of nodes i and j, respectively;
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SUPPLEMENTARY FIGURE 6. Behaviour of the violation threshold α-dependent terms of the right
hand side of Eq. (38) as a function of α for the real networks considered in the main text.

• model B: wij ∝ (cicj)
δ, where ci and cj are the clustering coefficient of nodes i and j,

respectively;

• model C: wij ∝ (kikj)
µ(cicj)

ν . This model accounts for the fact that weights among high
degree nodes are higher but also that weights among highly clustered nodes are also higher.

The exponents θ, δ, µ and ν are chosen as those minimizing the χ2 statistic for the corresponding
dataset (see the captions of Supplementary Figures 14–41 for the inferred values).

Although the three models reproduce exactly the degree sequence, the degree-dependent clus-
tering of the randomized networks is never better than the one obtained with our model. We find
that models A and C can reproduce fairly well the strength distributions, or at least their general
shapes. This is due to the strong influence of the topology over the weighted organization, and it
illustrates well the reason why we factorized the weights on Fig. 1 in the main text to account for
the effect of the topology. However, except for the world trade web and US airports network, we
find that the three models reproduce poorly the weight distributions and the disparities. This is
not particularly surprising in the case of the US airports network since our model predicts a weaker
dependence on the metric space, leaving weights mainly as a function of the degree of nodes. Sim-
ilarly, it is not surprising in the case of the world trade web given its small size. Nevertheless,
even though some of the local properties can be reproduced in some of the networks by the three
models, Supplementary Figures 14–41 show that none of them can reproduce the TIV (α) curves
observed for the real networks, suggesting that our assumption about the metric origin of weights
is a much better explanation of the real data.
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Name ρm,ω ρm,ωnorm β α 〈ε2〉 η a Suppl. Figure

World Trade 0.68 0.10 2.5 0.41 1.3 1.63 3772 7

Cargo ships 0.19 0.10 1.85 0.65 1.7 1.05 83 8

US Commodities 0.24 0.05 1.3 0.65 1.2 1.22 3045 9

US Airports 0.72 0.03 1.4 0.15 1.4 1.72 10000 10

US Commute 0.51 0.17 2.2 0.59 1.4 2.02 719 11

E. Coli 0.73 0.45 2.2 0.45 1.3 1.09 1 12

Human brain 0.27 0.23 2.8 0.45 1.3 0.86 0.015 13

SUPPLEMENTARY TABLE 1. Parameters and information about the datasets Pearson correlation
coefficients between the multiplicity, m, and the weight and normalized weight of links in the real networks
considered in the paper. Also, the parameters used to reproduce real networks with our model (see the main
text for description).
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SUPPLEMENTARY FIGURE 7. Predictions by the model introduced in Sec. I. Comparison between
topological and weighted properties of the WTW (symbols) and a synthetic network generated by the model
with the parameters given in Supplementary Table 1 (solid lines). a, complementary cumulative degree
distribution. b, complementary cumulative strength distribution. c, complementary cumulative weight
distribution of links. d, degree-dependent clustering coefficient. e, average strength of nodes of degree k. f,
disparity of nodes as a function of their degree.

100 101 102 103

k

10−3

10−2

10−1

100

P
c(
k

)

〈k〉real = 10.4

a

〈k〉model = 11.0

Real
Model

100 101 102 103

k

10−2

10−1

100

c̄(
k

)

c̄real = 0.42

d

c̄model = 0.42

Real
Model

100 101 102 103 104 105

s

10−3

10−2

10−1

100

P
c(
s)

〈s〉real = 1019

b

〈s〉model = 1053

Real
Model

100 101 102 103 104

w

10−4

10−3

10−2

10−1

100

P
c(
w

)

〈w〉real = 97
〈w〉model = 95

c

Real
Model

100 101 102 103

k

101

102

103

104

105

106

s̄(
k

)

e

η = 1.037
a = 91

akη

Real
Model

100 101 102 103

k

10−3

10−2

10−1

100

Y
(k

)

f

k−1

Real
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SUPPLEMENTARY FIGURE 8. Predictions by the model introduced in Sec. I. Comparison between
topological and weighted properties of the Cargo ships network (symbols) and a synthetic network generated
by the model with the parameters given in Supplementary Table 1 (solid lines). a, complementary cumulative
degree distribution. b, complementary cumulative strength distribution. c, complementary cumulative
weight distribution of links. d, degree-dependent clustering coefficient. e, average strength of nodes of
degree k. f, disparity of nodes as a function of their degree.
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SUPPLEMENTARY FIGURE 9. Predictions by the model introduced in Sec. I. Comparison between
topological and weighted properties of the US Commodities network (symbols) and a synthetic network
generated by the model with the parameters given in Supplementary Table 1 (solid lines). a, complementary
cumulative degree distribution. b, complementary cumulative strength distribution. c, complementary
cumulative weight distribution of links. d, degree-dependent clustering coefficient. e, average strength of
nodes of degree k. f, disparity of nodes as a function of their degree.
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SUPPLEMENTARY FIGURE 10. Predictions by the model introduced in Sec. I. Comparison be-
tween topological and weighted properties of the US airports network (symbols) and a synthetic network
generated by the model with the parameters given in Supplementary Table 1 (solid lines). a, complemen-
tary cumulative degree distribution. b, complementary cumulative strength distribution. c, complementary
cumulative weight distribution of links. d, degree-dependent clustering coefficient. e, average strength of
nodes of degree k. f, disparity of nodes as a function of their degree.
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SUPPLEMENTARY FIGURE 11. Predictions by the model introduced in Sec. I. Comparison be-
tween topological and weighted properties of the US Commute network (symbols) and a synthetic network
generated by the model with the parameters given in Supplementary Table 1 (solid lines). a, complemen-
tary cumulative degree distribution. b, complementary cumulative strength distribution. c, complementary
cumulative weight distribution of links. d, degree-dependent clustering coefficient. e, average strength of
nodes of degree k. f, disparity of nodes as a function of their degree.
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SUPPLEMENTARY FIGURE 12. Predictions by the model introduced in Sec. I. Comparison be-
tween topological and weighted properties of the iJO1366 E. Coli metabolic network (symbols) and a syn-
thetic network generated by the model with the parameters given in Supplementary Table 1 (solid lines). a,
complementary cumulative degree distribution. b, complementary cumulative strength distribution. c, com-
plementary cumulative weight distribution of links. d, degree-dependent clustering coefficient. e, average
strength of nodes of degree k. f, disparity of nodes as a function of their degree.
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SUPPLEMENTARY FIGURE 13. Predictions by the model introduced in Sec. I. Comparison be-
tween topological and weighted properties of the Human brain network (symbols) and a synthetic network
generated by the model with the parameters given in Supplementary Table 1 (solid lines). a, complemen-
tary cumulative degree distribution. b, complementary cumulative strength distribution. c, complementary
cumulative weight distribution of links. d, degree-dependent clustering coefficient. e, average strength of
nodes of degree k. f, disparity of nodes as a function of their degree.
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SUPPLEMENTARY FIGURE 14. Predictions by Model A. Comparison between topological and
weighted properties of the WTW (symbols) and a synthetic network generated by model A with θ = 0.9
(solid lines). a, complementary cumulative degree distribution. b, complementary cumulative strength
distribution. c, complementary cumulative weight distribution of links. d, degree-dependent clustering
coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a function of their degree.
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SUPPLEMENTARY FIGURE 15. Predictions by Model B. Comparison between topological and
weighted properties of the WTW (symbols) and a synthetic network generated by model B with δ = −1.01
(solid lines). a, complementary cumulative degree distribution. b, complementary cumulative strength
distribution. c, complementary cumulative weight distribution of links. d, degree-dependent clustering
coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a function of their degree.



20

100 101 102 103

k

10−3

10−2

10−1

100

P
c(
k

)
〈k〉real = 5.8

a

〈k〉model = 5.8

Real
Model

100 101 102 103

k

10−2

10−1

100

c̄(
k

)

c̄real = 0.57

d

c̄model = 0.57

Real
Model

101 102 103 104 105 106

s

10−3

10−2

10−1

100

P
c(
s)

〈s〉real = 127940

b

〈s〉model = 128188

Real
Model

101 102 103 104 105

w

10−3

10−2

10−1

100

P
c(
w

)

〈w〉real = 21982
〈w〉model = 22025

c

Real
Model

100 101 102 103

k

103

104

105

106

107

108

109

s̄(
k

)

e

η = 1.5304
a = 5094

akη

Real
Model

100 101 102 103

k

10−3

10−2

10−1

100

Y
(k

)

f

k−1

Real
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SUPPLEMENTARY FIGURE 16. Predictions by Model C. Comparison between topological and
weighted properties of the WTW (symbols) and a synthetic network generated by model C with µ = 1.3
and ν = 0.475 (solid lines). a, complementary cumulative degree distribution. b, complementary cumula-
tive strength distribution. c, complementary cumulative weight distribution of links. d, degree-dependent
clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a function of their
degree.
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SUPPLEMENTARY FIGURE 17. Triangle inequality violation spectrum. Comparison between
TIV (α) curves measured for the real WTW, our model and the models A, B and C with the exponents
given in the caption of Supplementary Figures 14–16.
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SUPPLEMENTARY FIGURE 18. Predictions by Model A. Comparison between topological and
weighted properties of the Cargo ships network (symbols) and a synthetic network generated by model
A with θ = 0.18 (solid lines). a, complementary cumulative degree distribution. b, complementary cumula-
tive strength distribution. c, complementary cumulative weight distribution of links. d, degree-dependent
clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a function of their
degree.
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SUPPLEMENTARY FIGURE 19. Predictions by Model B. Comparison between topological and
weighted properties of the Cargo ships network (symbols) and a synthetic network generated by model
B with δ = −0.39 (solid lines). a, complementary cumulative degree distribution. b, complementary cumu-
lative strength distribution. c, complementary cumulative weight distribution of links. d, degree-dependent
clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a function of their
degree.
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SUPPLEMENTARY FIGURE 20. Predictions by Model C. Comparison between topological and
weighted properties of the Cargo ships network (symbols) and a synthetic network generated by model
C with µ = 1.0 and ν = −0.3 (solid lines). a, complementary cumulative degree distribution. b, comple-
mentary cumulative strength distribution. c, complementary cumulative weight distribution of links. d,
degree-dependent clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a
function of their degree.
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SUPPLEMENTARY FIGURE 22. Predictions by Model A. Comparison between topological and
weighted properties of the US Commodities network (symbols) and a synthetic network generated by model
A with θ = 0.51 (solid lines). a, complementary cumulative degree distribution. b, complementary cumula-
tive strength distribution. c, complementary cumulative weight distribution of links. d, degree-dependent
clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a function of their
degree.
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SUPPLEMENTARY FIGURE 23. Predictions by Model B. Comparison between topological and
weighted properties of the US Commodities network (symbols) and a synthetic network generated by model
B with δ = −0.07 (solid lines). a, complementary cumulative degree distribution. b, complementary cumu-
lative strength distribution. c, complementary cumulative weight distribution of links. d, degree-dependent
clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a function of their
degree.



24

100 101 102

k

10−3

10−2

10−1

100

P
c(
k

)
〈k〉real = 5.8

a

〈k〉model = 5.8

Real
Model

100 101 102

k

10−2

10−1

100

c̄(
k

)

c̄real = 0.2

d

c̄model = 0.2

Real
Model

102 103 104 105

s

10−3

10−2

10−1

100

P
c(
s)

〈s〉real = 29824

b

〈s〉model = 28718

Real
Model

102 103 104 105

w

10−4

10−3

10−2

10−1

100

P
c(
w

)

〈w〉real = 5139
〈w〉model = 4948

c

Real
Model

100 101 102

k

103

104

105

106

107

s̄(
k

)

e

η = 1.1963
a = 3291

akη

Real
Model

100 101 102

k

10−2

10−1

100

Y
(k

)

f

k−1

Real
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SUPPLEMENTARY FIGURE 24. Predictions by Model C. Comparison between topological and
weighted properties of the US Commodities network (symbols) and a synthetic network generated by model
C with µ = 0.425 and ν = −0.025 (solid lines). a, complementary cumulative degree distribution. b,
complementary cumulative strength distribution. c, complementary cumulative weight distribution of links.
d, degree-dependent clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as
a function of their degree.
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SUPPLEMENTARY FIGURE 25. Triangle inequality violation spectrum. Comparison between
TIV (α) curves measured for the real US Commodities network, our model and the models A, B and C
with the exponents given in the caption of Supplementary Figures 22–24.
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SUPPLEMENTARY FIGURE 26. Predictions by Model A. Comparison between topological and
weighted properties of the US airports network (symbols) and a synthetic network generated by model
A with θ = 0.89 (solid lines). a, complementary cumulative degree distribution. b, complementary cumula-
tive strength distribution. c, complementary cumulative weight distribution of links. d, degree-dependent
clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a function of their
degree.
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SUPPLEMENTARY FIGURE 27. Predictions by Model B. Comparison between topological and
weighted properties of the US airports network (symbols) and a synthetic network generated by model
B with δ = −0.12 (solid lines). a, complementary cumulative degree distribution. b, complementary cumu-
lative strength distribution. c, complementary cumulative weight distribution of links. d, degree-dependent
clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a function of their
degree.



26

100 101 102 103

k

10−3

10−2

10−1

100

P
c(
k

)
〈k〉real = 8.6

a

〈k〉model = 8.6

Real
Model

100 101 102 103

k

10−2

10−1

100

c̄(
k

)

c̄real = 0.35

d

c̄model = 0.35

Real
Model

100 101 102 103 104 105 106 107

s

10−3

10−2

10−1

100

P
c(
s)

〈s〉real = 1450325

b

〈s〉model = 824780

Real
Model

100 101 102 103 104 105 106

w

10−3

10−2

10−1

100

P
c(
w

)

〈w〉real = 168076
〈w〉model = 95582

c

Real
Model

100 101 102 103

k

103

104

105

106

107

108

109

1010

s̄(
k

)

e

η = 1.7113
a = 11644

akη

Real
Model

100 101 102 103

k

10−3

10−2

10−1

100

Y
(k

)

f

k−1

Real
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SUPPLEMENTARY FIGURE 28. Predictions by Model C. Comparison between topological and
weighted properties of the US airports network (symbols) and a synthetic network generated by model
C with µ = 1.05 and ν = 0.225 (solid lines). a, complementary cumulative degree distribution. b, com-
plementary cumulative strength distribution. c, complementary cumulative weight distribution of links. d,
degree-dependent clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a
function of their degree.
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SUPPLEMENTARY FIGURE 29. Triangle inequality violation spectrum. Comparison between
TIV (α) curves measured for the real US airports network, our model and the models A, B and C with
the exponents given in the caption of Supplementary Figures 26–28.
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SUPPLEMENTARY FIGURE 30. Predictions by Model A. Comparison between topological and
weighted properties of the US Commute network (symbols) and a synthetic network generated by model A
with θ = 1.07 (solid lines). a, complementary cumulative degree distribution. b, complementary cumula-
tive strength distribution. c, complementary cumulative weight distribution of links. d, degree-dependent
clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a function of their
degree.
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SUPPLEMENTARY FIGURE 31. Predictions by Model B. Comparison between topological and
weighted properties of the US Commute network (symbols) and a synthetic network generated by model B
with δ = 0.32 (solid lines). a, complementary cumulative degree distribution. b, complementary cumula-
tive strength distribution. c, complementary cumulative weight distribution of links. d, degree-dependent
clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a function of their
degree.
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SUPPLEMENTARY FIGURE 32. Predictions by Model C. Comparison between topological and
weighted properties of the US Commute network (symbols) and a synthetic network generated by model
C with µ = 1.35 and ν = 0.625 (solid lines). a, complementary cumulative degree distribution. b, com-
plementary cumulative strength distribution. c, complementary cumulative weight distribution of links. d,
degree-dependent clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a
function of their degree.
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SUPPLEMENTARY FIGURE 33. Triangle inequality violation spectrum. Comparison between
TIV (α) curves measured for the real US Commute network, our model and the models A, B and C with
the exponents given in the caption of Supplementary Figures 30–32.
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SUPPLEMENTARY FIGURE 34. Predictions by Model A. Comparison between topological and
weighted properties of the iJO1366 E. Coli metabolic network (symbols) and a synthetic network generated
by model A with θ = 0.16 (solid lines). a, complementary cumulative degree distribution. b, comple-
mentary cumulative strength distribution. c, complementary cumulative weight distribution of links. d,
degree-dependent clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a
function of their degree.
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SUPPLEMENTARY FIGURE 35. Predictions by Model B. Comparison between topological and
weighted properties of the iJO1366 E. Coli metabolic network (symbols) and a synthetic network gen-
erated by model B with δ = −0.15 (solid lines). a, complementary cumulative degree distribution. b,
complementary cumulative strength distribution. c, complementary cumulative weight distribution of links.
d, degree-dependent clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as
a function of their degree.
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SUPPLEMENTARY FIGURE 36. Predictions by Model C. Comparison between topological and
weighted properties of the iJO1366 E. Coli metabolic network (symbols) and a synthetic network generated
by model C with µ = 0.225 and ν = 0.075 (solid lines). a, complementary cumulative degree distribution.
b, complementary cumulative strength distribution. c, complementary cumulative weight distribution of
links. d, degree-dependent clustering coefficient. e, average strength of nodes of degree k. f, disparity of
nodes as a function of their degree.
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SUPPLEMENTARY FIGURE 37. Triangle inequality violation spectrum. Comparison between
TIV (α) curves measured for the real iJO1366 E. Coli metabolic network, our model and the models A,
B and C with the exponents given in the caption of Supplementary Figures 34–36.
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SUPPLEMENTARY FIGURE 38. Predictions by Model A. Comparison between topological and
weighted properties of the Human brain network (symbols) and a synthetic network generated by model A
with θ = −0.19 (solid lines). a, complementary cumulative degree distribution. b, complementary cumula-
tive strength distribution. c, complementary cumulative weight distribution of links. d, degree-dependent
clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a function of their
degree.

100 101 102

k

10−3

10−2

10−1

100

P
c(
k

)

〈k〉real = 24.1

a

〈k〉model = 24.1

Real
Model

100 101 102

k

10−1

100

c̄(
k

)

c̄real = 0.54

d

c̄model = 0.54

Real
Model

10−2 10−1 100

s

10−3

10−2

10−1

100

P
c(
s)

〈s〉real = 0

b

〈s〉model = 0

Real
Model

10−5 10−4 10−3 10−2 10−1

w

10−4

10−3

10−2

10−1

100

P
c(
w

)

〈w〉real = 0
〈w〉model = 0

c

Real
Model

100 101 102

k

10−2

10−1

100

s̄(
k

)

e

η = 0.85
a = 0

akη

Real
Model

100 101 102

k

10−2

10−1

100

Y
(k

)

f

k−1

Real
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SUPPLEMENTARY FIGURE 39. Predictions by Model B. Comparison between topological and
weighted properties of the Human brain network (symbols) and a synthetic network generated by model B
with δ = 0.33 (solid lines). a, complementary cumulative degree distribution. b, complementary cumula-
tive strength distribution. c, complementary cumulative weight distribution of links. d, degree-dependent
clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a function of their
degree.
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SUPPLEMENTARY FIGURE 40. Predictions by Model C. Comparison between topological and
weighted properties of the Human brain network (symbols) and a synthetic network generated by model
C with µ = −0.125 and ν = 0.2 (solid lines). a, complementary cumulative degree distribution. b, com-
plementary cumulative strength distribution. c, complementary cumulative weight distribution of links. d,
degree-dependent clustering coefficient. e, average strength of nodes of degree k. f, disparity of nodes as a
function of their degree.
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SUPPLEMENTARY FIGURE 41. Triangle inequality violation spectrum. Comparison between
TIV (α) curves measured for the real Human brain network, our model and the models A, B and C with
the exponents given in the caption of Supplementary Figures 38–40.
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[11] M. Á. Serrano, M. Boguñá, and R. Pastor-Satorras, “Correlations in weighted networks,” Phys. Rev.

E 74, 055101 (2006).
[12] S. Pajevic and D. Plenz, “The organization of strong links in complex networks,” Nat. Phys. 8, 429–436

(2012).
[13] C. Orsini, M. M. Dankulov, P. Colomer-de Simón, A. Jamakovic, P. Mahadevan, A. Vahdat, K. E.
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