
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

A) Summary of the key results:  

This paper extends the notion of geometric embedding of networks to the case of weighted 

networks. It introduces a model with coupled strengths and degrees and explicit embedding in a 

geometric space. It compares the model results with empirical network data. Although the results 

are interesting and the model is a new one, the approach is too specific and too many arbitrary 

assumptions are made to arrive to the final results. This paper is not of immediate interest to a 

broad audience.  

I therefore do not recommend publication in Nature Communication.  

 

B) Originality and interest:  

The problem of modelling both weights and topology of real networks is not new, but more than a 

decade old. It dates back to when the first evidence of coupling between topology and weights has 

been provided (see Barrat, Alain, et al. "The architecture of complex weighted networks." 

Proceedings of the National Academy of Sciences of the United States of America 101.11 (2004): 

3747-3752, and Barrat, Alain, Marc Barthélemy, and Alessandro Vespignani. "Weighted evolving 

networks: coupling topology and weight dynamics." Physical review letters 92.22 (2004): 

228701.)  

The main original contribution of this paper is a very specific model of geometrically embedded 

networks, where the weight structure is induced by the embedding.  

However, the claimed generality of the approach is questionable and the model is too specific to 

appeal to a broad audience (see point C below).  

Even for a specialized audience of network scientists, this paper is too restrictive to attract general 

interest. It provides an ad hoc mechanism that is unlikely to stimulate significant new research at 

a general level.  

 

C) Data & methodology:  

The approach is valid in itself, but the claim of being the most flexible and appropriate one is 

unjustified. The key assumption of the model, eq.(2), is a highly arbitrary choice. It relies on the 

assumption that there are two hidden variables per node, controlling for the expected degree and 

strength of that node respectively. Although the authors show that eq.(2) is the only one ensuring 

that the expected strength coincides with the associated hidden variable, this is an arbitrary and 

questionable criterion. Hidden variables are introduced precisely in order to `explain' the expected 

properties (like strengths and degrees) via a hidden or underlying quantity which influences such 

properties, usually in a highly nonlinear way. Requiring the hidden variable to coincide with the 

expected value of the property it is controlling for is an unnecessary restriction.  

The claim of generality is therefore incorrect.  

Also, the postulated form of the coupling between degrees and weights is quite arbitrary, as well 

as its dependence on the parameter alpha.  

The quality of the presentation is good.  

 

D) Appropriate use of statistics and treatment of uncertainties:  

Although the paper does not make use of a sophisticated statistical treatment of the data, or of 

advanced statistical tests, the comparison between the model and the data appears generally 

correct and it supports the conclusions.  

 

E) Conclusions:  

The conclusions are sound, and the accordance between the model and the data is a nice result. 

However, the robustness of these results is questionable given the highly "ad hoc" nature of the 

model. What new general insight do we get about network formation?  

The problem of modelling weights and topology in a realistic and parsimonious way remains 

fundamentally unsolved.  



 

F) Suggested improvements:  

The paper should be submitted to a much more specialized journal like Physical Review E. The 

paper would benefit from a more intuitive discussion of what the abstract notion of geometric 

embedding plausibly means for real-world networks.  

 

G) References:  

Credit to previous work is not appropriately given. A vast literature on network embedding in 

various manifolds (including hyperbolic ones and higher-dimensional ones) exists. See the many 

works by Tomaso Aste and Tiziana di Matteo as an example. Also the main works about spatially 

embedded networks (see review by Marc Barthelemy and references therein) are not adequately 

cited.  

 

H) Clarity and context:  

abstract, introduction and conclusions are clear and well written. However they overstate the 

generality of the model and should more fairly emphasize the specific assumptions made in the 

paper.  

 

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors approach the problem of whether the edge weights in real networks emerge have a 

geometrical origin and whether this can be well captured by suitable hidden variables models.  

 

In particular, the authors first provide some evidence of the geometric nature of the weights, by 

studying the distribution of weights for links that are embedded in triangles. They then build a 

class of embedded weighted networks that is able to reproduce a number of properties of the 

observed networks. Finally, they show that this class of networks manages to capture and 

reproduces the observed metrical properties of real networks by checking the triangle violation in 

an hyperbolic embedding, equivalent to the first one.  

 

The topic addressed is interesting, timely and relevant for the journal's audience.  

It builds on previous work by some of the authors on hidden variable models and the 

corresponding embeddings that showed that many sparse unweighted networks can be fruitfully 

embedded in hyperbolic spaces yielding novel effective strategies for navigation and link 

prediction.  

The paper is very well written and the topic clearly explained. The references and abstract are 

appropriate and cover the right existing literature on the subject.  

The structure of the paper is appropriate and the contribution is novel. Previous work on the same 

subject focused on the unweighted case, this contribution provides first evidence that the 

description of weights too can be cast in the same paradigm.  

Although I am a bit dubious about the long term impact of the paper, I believe it will be of interest 

to others in the field. I've have a few main comments (listed below), but I think that, once these 

are met, the manuscript will be fit for publication in Nature Communications.  

 

Main comments:  

 

- All the analysed networks have beens sparsified via disparity filter before analysis.  

- How does the analysis generalise to the case of dense networks?  

- Pushing this argument, one might wonder what it would happen for the case of complete 

weighted networks, e.g. similarity or correlation networks, where the degree is already fixed. For 

example, for Pearson correlation matrices, the matrix already yields a distance matrix; how 

different does the weighted embedding proposed here would come out in that case?  

- What is the role of D? In this paper the authors provide insights one the geometry of edge 



weights, but it's not clear the geometry of which space. Most of the analysed networks already live 

in a number of different dimensions (2, 3 etc) but they already appear to be well described by a 

D=1 model. It seems thus that the geometrical nature of the weights refers to a different 

geometrical space than the original network's natural embedding space . So, does this geometry 

really carry information/meaning or is it just a very general and elegant way to produce hidden 

variable networks? Alternatively, what would going to higher D grant in terms of network 

description or degrees of freedom?  

- What are the atypical features that impeded the embedding of the US airport network? Do they 

constitute a problem for the general theory?  

 

Minor comments:  

 

- "particularize" is really an awkward word, maybe something like "we focus/restrict to the D=1" 

or equivalent would be nicer.  

- There's a typo on the als page "weigths" instead of "weights"  

- Same page "On perspective" -> "in perspective"  

 

 

Reviewer #3 (Remarks to the Author):  

 

A. Summary of the key results  

 

The authors Allard et. al. study the relationship between edge weights and a latent-space 

hyperbolic geometry for empirical networks. The latent spaces of networks are inferred using 

topology alone. The authors develop a novel network-generative model which they fit to empirical 

networks. They find that edge weights can be jointly coupled to the network topology (i.e., node 

degrees) as well as the geometry of the latent-space embedding. They explore the connection 

between edge weights and geometry by studying the violation of the triangle inequality for 

triangles in the network.  

 

 

B. Originality and interest: if not novel, please give references  

 

Understanding the origin of weights in weighted networks is a central topic in network science. 

This research provides the first step toward modeling weighted networks using latent-space, 

hyperbolic embeddings and is indeed an important contribution that should be published in some 

form. Publication in Nature Communications, however, requires a substantial advancement, and I 

believe the paper falls short in this regard. In particular, hyperbolic geometry is inferred from 

network topology, and since weights are known to depend on topology, it is somewhat 

unsurprising that there is a connection between the weights and geometry. For example, it has 

already been established that weights are larger for edges between larger degrees [1](i.e., 

popularity) as well as for edges that join nodes with overlapping neighborhoods [19] (i.e., 

similarity). It is unclear whether or not the hyperbolic geometry modeling approach provides 

further insight than what is possible by studying the dependence of weights on node degrees and 

triangle participation (i.e., neighborhood overlap). (I note that both [1] and [19] are already cited 

in the paper, but the authors do not clearly discuss their connection to the geometric notions of 

'popularity' and 'similarity.')  

 

 

C. Data & methodology: validity of approach, quality of data, quality of presentation  

 

The methodology for hyperbolic space embeddings is state-of-the-art in the field of network 

science. Their model is indeed the state-of-the-art for modeling weighted networks in hyperbolic 

spaces.  

 



 

D. Appropriate use of statistics and treatment of uncertainties  

 

The article uses appropriate statistics, although it would be helpful to provide further details about 

their methods for inference.  

 

 

E. Conclusions: robustness, validity, reliability  

 

By modeling the coupling between weights, node degrees, and geometry, the authors provide a 

framework to deeply study these relationships. This is indeed an important contribution that 

justifies publication in some form. However, outside of observing, model fitting, and measuring the 

extent of these relations, very little other scientific insight is provided. That is, it is not clear if or 

how a relationship between weights and geometry will have an impact on any application.  

 

 

F. Suggested improvements: experiments, data for possible revision  

 

Main areas of improvement:  

 

1. Section II studies the relationship between weights and triangles. Triangles and clustering 

reflect geometry due to the triangle inequality, however triangles are an indirect consequence of 

geometry. For examples, the number of triangles in which an edge is involved (that is, its 

multiplicity m) also depends on the nodes' degrees (i.e., topology). For example, in configuration 

models the multiplicity m grows with k_ik_j, since (k_i-1)(k_j-1) gives number of possible 

triangles and edges are created at random. Given the focus on triangles both in section II and the 

violation of triangle inequality, the paper needs a much more detailed/systematic exploration and 

discussion of the relationship between triangles and geometry. This relation is currently vague, 

and citing the triangle inequality does not provide quantitative evidence of their connection.  

 

2. In contrast to triangles, edge length is a direct measurement of geometry and may provide a 

more straightforward description for how weights and geometry are coupled. That is, are weights 

larger for shorter edges? Studying edge lengths may also help address comment A (the origin of 

clustering), since it would be helpful to understand if triangles primarily exist between node triples 

(i,j,k) that are nearby in the metric space, and if so, do they primarily involve nodes with small 

\Delta \theta or nodes with large degrees.  

 

3. It may also be informative to study the way in which triangle inequalities are violated. For 

example, is the inequality first violated for triangles involving nearby nodes or those that involve 

distant nodes? Is the inequality first violated for triangles involving hubs or those that do not 

involve hubs.  

 

Minor issues:  

 

4. abstract line 3: The authors do not 'prove' their model to be the "most" general and versatile 

model. 

 

5. Sec. II - for many networks, multiplicity m and k_ik_j are highly correlated, implying that 

sampling of biased on m is similar to sampling with a bias on k_ik_j. It is worth noting how 

normalization according to k_ik_j overcomes this bias.  

 

6. Sec. II - Does this normalization help address the goal of discerning the dependence of edge 

weights on \Delta \theta versus k_i and k_j?  

 

7. Sec. III, Eq. 2 - secondary hidden parameters \sigma_i and \sigma_j are defined for edge 



weights, however, it is later assumed that \sigma_j = ak_j^\eta. Why define them at all?  

 

8. Sec. III - "given second moment ��<\epsilon^2>" How is this chosen? Is it independent of 

k_i, k_j, and \alpha?  

 

9. Sec. III - The statement "All the theoretical predictions are confirmed in Supplementary Figure 

1." should be made more precise. i.e., what theoretical predictions? Scaling results?  

 

10. Fig. 3 - The authors need to give a complete explanation of "atypical topological features".  

 

11. Fig. 3 - Why do some TIV curves increase when \alpha~1?  

 

12. Discussion under FIg. 4 - "weigths" -> "weights"  

 

 

G. References: appropriate credit to previous work?  

 

The authors do a good job of citing previous research.  

 

 

H. Clarity and context: lucidity of abstract/summary, appropriateness of abstract, introduction and 

conclusions  

 

It may be helpful to discuss the triangle inequality and clustering in the abstract/intro given that it 

is a central topic of the paper. Also, I found the intro/abstract to not clearly identify new scientific 

insights allowed by the new model.  

 

 

I. Summary  

 

This research is an important and exciting area of network science, and the work is very high 

quality - both in philosophy and execution. However, I find the current paper to be lacking the 

"wow" factor that would justify publication in Nature Communications. The authors have made an 

interesting observation and developed a state-of-the-art model for it, but they have not illustrated 

this observation to have important consequences or provide useful insights. Moreover, I believe 

the "geometric nature" of weights to be under explored (see comments 1-2). For these reasons, I 

believe this work to be better suited for another journal.  

 

 



1. Replies to the comments of Reviewer #1

We are glad to see that the reviewer judge that our “approach is valid”, that our “conclusions are sound,
and the accordance between the model and the data is a nice result”, and that the “abstract, introduction
and conclusions are clear and well written”. We thank the reviewer for her/his kind words. However, the
reviewer made several remarks to which we would like to respond. Her/his comments are summarised in
the following points.

1.A “The main original contribution of this paper is a very specific model of geometrically embedded
networks, where the weight structure is induced by the embedding.”

We would like to stress that, in our opinion, the main contribution of our work is the empirical observation
that weights in complex networks are influenced in a non-trivial way by some underlying metric structure.
As far as we know, this is a novel and important result that extends the hidden/latent geometry paradigm
to weighted complex networks. Of course, such empirical result claims for a modelling that would take it
into account. This is the reason why we introduce our model, which is able to reproduce the coupling with
the metric space in a very simple and elegant way. As we discuss in detail in the next point, our model has
the ability to discriminate between purely local properties related to the degree and strength of nodes and
the coupling with the metric space, thus giving us the ability to measure such coupling in real systems.

1.B The approach is valid in itself, but the claim of being the most flexible and appropriate one is unjustified.
The key assumption of the model, eq.(2), is a highly arbitrary choice. It relies on the assumption that there
are two hidden variables per node, controlling for the expected degree and strength of that node respectively.
Although the authors show that eq.(2) is the only one ensuring that the expected strength coincides with the
associated hidden variable, this is an arbitrary and questionable criterion. Hidden variables are introduced
precisely in order to ‘explain’ the expected properties (like strengths and degrees) via a hidden or underlying
quantity which influences such properties, usually in a highly nonlinear way. Requiring the hidden variable
to coincide with the expected value of the property it is controlling for is an unnecessary restriction. The
claim of generality is therefore incorrect. Also, the postulated form of the coupling between degrees and
weights is quite arbitrary, as well as its dependence on the parameter alpha.

Notice that hidden variables can always be redefined such that they represent the property of interest, in
our case nodes’ degrees and strengths. That being said, the model that we introduce in Eqs. (1) and (2)
guaranties that we can fix the local properties of the nodes, that is, their joint degree-strength distribution
similar to the one of a real network under study and, simultaneously, change in an independent manner the
coupling between the weights and the metric space. This critical property is the one allowing us to gauge
the effect of the metric space in real systems. This very same feature is also present in our different models
of networks embedded in hidden (hyperbolic) spaces. There, too, we can fix the degree distribution and
modify the coupling between topology and metric space so that different levels of clustering arise. This
has been widely acknowledged by the community of network scientists and accepted as a new paradigm
to describe and characterize complex networks. Our work here goes in the same direction and we are
convinced that it will become the standard model for weighted networks embedded in metric spaces in the
near future.

As for the particular form of Eq. (2) and the introduction of parameter α, here we follow a long standing
tradition of “gravity models” in the Social Sciences, and in particular in Economics where the interaction
between two countries is postulated to be proportional to the product of their “masses” (a measure of the
importance of countries’ economies) and inversely proportional to their (geographic) distance. Eq. (2) is
a novel generalisation of this concept to the case of weighted networks. In this case, the role of a given
node’s “mass” must be played by the factor

σ

κ1−α/D

ensuring that, once the network has been assembled, that particular node has expected degree and strength
κ and σ, respectively. Far from being arbitrary, the choice for this functional form of the “mass” and the
identification of the hidden variables with the expected degrees and strengths ensure that, as a first but
accurate approximation, we can use observed degrees and strengths in real networks as proxies for the
unknown hidden variables.



Finally, our claim about the generality and versatility of our model is supported by the following properties:

1. Our model can fix in an arbitrary way the joint distribution ρ(κ, σ), thus allowing to control the
degree and strength distributions and any possible form of correlations (positive or negative) among
degree and strength. In particular, ρ(κ, σ) can take the form of correlations observed in real networks.

2. With strength and degree fixed, it can tune independently the coupling between weights and metric
space through the parameter α and so reproduce the triangle inequality violation curves of real
networks, as shown in Fig. 3.

3. The model can adjust the level of noise in the system through the parameter 〈ε2〉. While noise is
always present in real systems, it is usually not even considered in other models of weighted networks.

4. The model reproduces very well many other properties of real networks: degree-degree correlations,
degree-dependent clustering coefficient, betweenness centrality (see for instance the supplementary
information of Ref. [1]), global weight distribution, disparity measure, etc.

To the best of our knowledge, none of the models proposed so far in the literature satisfies all these
characteristics simultaneously. In the new version of the manuscript, we have replaced the sentence “we
introduce the most general and versatile class of weighted networks...” by “we introduce a very general
and versatile class of weighted networks...”

1.C “The problem of modelling both the weights and topology of real networks is not new, but more than
a decade old.”

We agree with the referee. Indeed, this is not a new problem. However, this fact does not make the problem
uninteresting, but rather, it makes it more challenging (see for instance a couple of related works recently
published in Nature Physics [2] and Nature Communications [3]). We would like to notice that despite the
elapsed ten years, no much progress has been made in this field; the reason being the inherent difficulty of
the problem. In our paper, we make a quite big step forward that, we are certain, will stimulate further
research in this direction. On the one hand, the introduction of genuine gravity laws in networks will be
of interest to fields where such laws can only be applied to fully connected structures. This opens a new
line of theoretic research on the coupling between topology, weighted structure, and geometry in complex
networks. On the other hand, our work opens the possibility to use information encoded in the weights of
the links to find more accurate embeddings of real networks. We can then use these improved embeddings
to detect network communities, missing links and, for the first time, give estimates of the weights of such
missing links. We have modified the discussion section of our paper to emphasise these future research
directions.

1.D “What new general insight do we get about network formation? The problem of modelling weights
and topology in a realistic and parsimonious way remains fundamentally unsolved.”

In our opinion, the dependence of the properties of networks, both at the topological and weighted levels, on
hidden/latent metric spaces which encode in a geometric distance all the factors that affect the propensity
of nodes to establish connections and to supply them with a certain intensity is a new insight about
network formation that we consider very interesting and important and that should be taken into account
in any future research on this topic. For the first time, the gravity model can be used to explain both
the formation of links and weights in networks. On top of that, we provide a general model that, for the
first time, accurately reproduces many properties observed in real weighted networks from various origins.
Incidentally, our model unveils that the coupling of the topology and the weights with the underlying metric
space are in some cases uncorrelated, which in turn suggests that the formation of connections and the
assignment of their magnitude can be ruled by different processes. We agree with the reviewer that many
questions about the formation of real weighted networks remain open, and we believe that our contribution
is substantial enough to encourage other researchers to join the endeavour.

1.E “What the abstract notion of geometric embedding plausibly means for real-world networks?”

This is indeed an excellent and difficult question that we have been trying to answer since we published our
first work on the subject [4]. In that work, we found that the properties of the degree-dependent clustering



coefficient of some real complex networks are compatible with the existence of a hidden metric space
ruling the probability of existence of links between nodes. Interestingly, we also found that the Internet fits
particularly well within this new paradigm and its inferred embedding in the hyperbolic plane (see Ref. [1])
has excellent routing properties in this space. We have also developed both static and growing models (like
the one in Ref. [5]) showing that our models are able to reproduce the topologies of real complex networks
extremely well and, at the same time, are mathematically tractable as interactions are still pairwise.

The nature of such hidden metric spaces is, however, not totally clear. In the case of social structures for
instance, even though it is difficult to quantify, we, as individuals, are able to tell whether one person is
close of far from us and, in many cases, we establish social relationships based on this perception. In the
social sciences, this concept is called homophily and is responsible for the assortative character of social
networks. In the case of economic systems, like countries, the metric distance can be an effective space
combining geographic, cultural, historical, and political distances (see for instance Ref. [6]). In the case of
the Internet, it is probably a combination of geography and commercial agreements between the different
actors at play.

Nevertheless, beyond the philosophical discussion about the origin of such spaces, the concept of a hidden
metric space can also be seen as a mathematical tool that can be leveraged to generate realistic networks.
For instance, it is the only framework that allows to generate strong clustering based on pairwise interactions
only (due to the triangle inequality of the metric space). Similarly, our manuscript demonstrates how the
metric space allows to realistically and directly assign weights to links given a fixed degree-strength sequence
(i.e., without relying on iterative methods), which is a notoriously difficult problem.

1.F “Credit to previous work is not appropriately given. A vast literature on network embedding in various
manifolds (including hyperbolic ones and higher-dimensional ones) exists.”

We thank the reviewer for pointing out potential interesting references, and we now acknowledge the
work of Aste and Di Matteo as well as of Barthelemy (whose work was already acknowledged via other
references). However, while the work of Aste and di Matteo embed complex networks into hyperbolic
manifolds to characterise and filter them (see for instance [7-8]), the information encoded in the distance
between nodes remains unexploited and, as such, their many contributions are only weakly related to our
work (and most of the work already cited in the manuscript).

2. Replies to the comments of Reviewer #2

We are delighted that the reviewer finds that the “topic addressed is interesting, timely and relevant for
the journal’s audience”, that the “paper is very well written and the topic clearly explained”, that our
“contribution is novel”, and that our “manuscript will be fit for publication in Nature Communications”
once a few minor comments have been addressed. The latter are addressed below.

2.A “How does the analysis generalise to the case of dense networks? Pushing this argument, one might
wonder what it would happen for the case of complete weighted networks, e.g. similarity or correlation
networks, where the degree is already fixed. For example, for Pearson correlation matrices, the matrix
already yields a distance matrix; how different does the weighted embedding proposed here would come
out in that case?”

The reviewer raises a good point. The analysis of the model presented in the Supplementary Information
shows that the networks generated by our model are sparse in the limit N → ∞. This result assumes,
however, that the density δ, the average expected degree 〈κ〉 and the integral I1 are all bounded. Refer-
ence [9] studies a special case in which I1 is not bounded but shows that the average degree of the network
scales sub-linearly with the number of nodes. It is not clear, however, how the model behaves in general in
the case of dense or complete networks, which would require a different model to generate the topology.
In fact, current ongoing research is looking into a variation of our model and its application to correlation
matrices.

2.B “What is the role of D? In this paper the authors provide insights one the geometry of edge weights,



but it’s not clear the geometry of which space. Most of the analysed networks already live in a number
of different dimensions (2, 3 etc) but they already appear to be well described by a D=1 model. It seems
thus that the geometrical nature of the weights refers to a different geometrical space than the original
network’s natural embedding space. So, does this geometry really carry information/meaning or is it just
a very general and elegant way to produce hidden variable networks? Alternatively, what would going to
higher D grant in terms of network description or degrees of freedom?”

The reviewer is right “that the geometrical nature of the weights refers to a different geometrical space than
the original network’s natural embedding space”. In fact, one of the networks for which our model works
best is the metabolic network, which does not have a natural embedding space. The hidden metric space
used in our framework is an abstract space in which the distance between nodes encodes the likelihood
for them to be connected. Notice, however, that not only the geometrical distance (i.e., the arc length in
the case of the circle S1) influences the likelihood of nodes to be connected, but also the product of their
respective expected degrees [see Eq. (1) and (3)]. In other words, two hubs are effectively closer than two
low-degree nodes even if both pairs are separated by the same arc length.

This is particularly important in the case of heterogeneous (scale-free) networks because this makes the
particular dimension of the metric space, D, not so relevant. The reason is, as we show in Ref. [9], that
our model can be mapped into a purely geometric random graph in the (D + 1)-dimensional hyperbolic
space HD+1. In such space, the volume of a ball of radius r grows as V ∼ eDr and, thus, the value of
D only changes the pre-factor of the exponential growth law of the ball but not the fact that it grows
exponentially. This implies that, even if the original metric space is not one-dimensional, its embedding
in the two-dimensional hyperbolic plane is very good. In other words, H2 already has enough space to
fit any network without violating the triangle inequality. In our paper we chose to leave the parameter D
free for the sake of presenting the most general model possible. However, when it comes to studying real
networks, and given the considerations above, we chose D = 1 as it simplifies enormously the analytic
and computational treatment. Of course, one could however argue that going to higher dimensions—and
therefore having more degrees of freedom in the geometrical space—could be useful in the context of
communities [10], for instance. While this is perfectly possible from a theoretical point of view, the inverse
problem of finding embeddings of real networks would become computationally infeasible.

2.C “What are the atypical features that impeded the embedding of the US airport network? Do they
constitute a problem for the general theory?”

The atypical features mentioned in the manuscript refer to power-law degree distribution with an exponent
below 2 in the case of the U.S. airports network and a short-range repulsion effect in the connection
probability for the commute network (i.e., people rarely commute from one suburb to another but rather
commute from one suburb to the major city in the area). This does not affect the general theory described
in the manuscript but rather prevent the state-of-the-art embedding algorithms to provide us with an
embedding of the two networks. We are currently working on a generalisation of a class of embedding
algorithms that would allow the embedding of such networks.

2.D Minor comments

We thank the reviewer for pointing our these typos which have been corrected accordingly.

2.E “The references and abstract are appropriate and cover the right existing literature on the subject.”

We thank the reviewer.

3. Replies to the comments of Reviewer #3

We acknowledge that the reviewer deems that our contribution tackles “an important and exciting area of
network science” by providing “the first step toward modelling weighted networks latent-space, hyperbolic
embeddings”, that our model is “state-of-the-art for modelling weighted networks in hyperbolic space”,
that our “work is very high quality—both in philosophy and execution” and that it is “indeed an important



contribution that should be published in some form”. We thank the reviewer for her/his kind words. As
for reviewer #1, the reviewer expresses some doubts as to whether our contribution is fit to be published
in Nature Communications. We respond point by point to her/his comments in hope to convince her/him
of that our contribution is worthy of the high standards of this journal.

3.A “In particular, hyperbolic geometry is inferred from network topology, and since weights are known
to depend on topology, it is somewhat unsurprising that there is a connection between the weights and
geometry. For example, it has already been established that weights are larger for edges between larger
degrees [1](i.e., popularity) as well as for edges that join nodes with overlapping neighbourhoods [19] (i.e.,
similarity). It is unclear whether or not the hyperbolic geometry modelling approach provides further insight
than what is possible by studying the dependence of weights on node degrees and triangle participation
(i.e., neighbourhood overlap). (I note that both [1] and [19] are already cited in the paper, but the authors
do not clearly discuss their connection to the geometric notions of “popularity” and “similarity.”)”

Please notice that to perform the empirical analysis in Fig. 1, we do not infer the hyperbolic geometry
from network topology (which we do in the final part of the paper for self-consistency of the analysis).
Instead, we study how normalised weights are distributed over the edges of the network. We agree with the
reviewer that weights in complex networks depend on the topology (see Ref. [11]) and this is precisely why
we considered normalised weights in Section II of the manuscript (see also our answer to comment 3.I). By
normalising the weights by the average value ω̄(kk′), we factorised out the dependency on the topology,
leaving weights that seemingly randomly fluctuate around 1. However, as shown in Fig. 1, these fluctuations
are not uniform, as we see that links involved in triangles tend to have larger normalised weights than the
average link. Since triangles are a reflection of the triangle inequality in the underlying metric space, we
expect nodes forming triangles to be close to one another. Thus, the higher average normalised weight
observed on triangles strongly suggests a metric nature of weights, which is not a trivial consequence of the
relation between weights and topology. Notice also that our theoretical model provides a counterexample of
the referee’s observation that “since weights are known to depend on topology, it is somewhat unsurprising
that there is a connection between the weights and geometry”. Indeed, by changing the parameter α, we
can generate networks with an arbitrary coupling between weights and metric space (even zero coupling)
even though they share the very same network topology and correlations between strength and degree.
However, we found that the weight distribution and the disparity were well reproduced only with the value
of α found using the test of the triangle inequality.

As for the results in Refs. [1] and [19] (in the old version of the manuscript), it is indeed well known and
accepted that weights are higher between nodes of high degrees. In [19], the authors found a positive
correlation between weights and link clustering (or neighbourhood overlap). However, since it is also
true that link clustering is typically correlated with the degrees of the endpoint nodes, the correlation
between absolute weights and degrees is also expected, which prevents from a direct observation of metric
properties in the weights. In our work, we filter out such induced correlations by normalising the weights
so that genuine correlations with the metric space can be detected. In the revised version of the paper, we
have included a discussion to clarify this point.

3.B “The article uses appropriate statistics, although it would be helpful to provide further details about
their methods for inference.”

In section II of the Supplementary Information file, we provide a detailed explanation of the statistical
method we have developed to measure parameters α and 〈ε2〉. The embedding methods of the unweighted
versions of the networks is fully described in our previous publication [1].

3.C “By modelling the coupling between weights, node degrees, and geometry, the authors provide a
framework to deeply study these relationships. This is indeed an important contribution that justifies
publication in some form. However, outside of observing, model fitting, and measuring the extent of these
relations, very little other scientific insight is provided. That is, it is not clear if or how a relationship
between weights and geometry will have an impact on any application. ”

With hindsight, we agree with the reviewer that we may have lacked in explaining clearly the implications of
our work for the understanding of real weighted networks, which we believe are remarkable. For instance,
our equations can be understood as the new generation of gravity laws applicable to very different domains,



including Biology, Information and Communication Technologies, and Social Systems. Current gravity laws
are prescribed to the Social Sciences and predict successfully the volume of flows between elements but
cannot explain the observed topology of the interactions among them. Our contribution overcomes this
limitation and offers for the first time a gravity model that can reproduce both the existence and the
intensity of interactions. This opens a new line of theoretic research on the coupling between topology,
weighted structure, and geometry in complex networks. On the other hand, our work opens the possibility
to use information encoded in the weights of the links to find more accurate embeddings of real networks.
We can then use these improved embeddings to detect network communities, missing links and, for the
first time, give estimates of the weights of such missing links, and to implement navigation and searching
protocols, such as greedy routing, which take into account not only the existence of connections but also
their intensity. We have modified the discussion section of our paper to emphasise these future research
directions.

3.D “Section II studies the relationship between weights and triangles. Triangles and clustering reflect
geometry due to the triangle inequality, however triangles are an indirect consequence of geometry. For
examples, the number of triangles in which an edge is involved (that is, its multiplicity m) also depends
on the nodes’ degrees (i.e., topology). For example, in configuration models the multiplicity m grows with
kikj , since (ki− 1)(kj − 1) gives number of possible triangles and edges are created at random. Given the
focus on triangles both in section II and the violation of triangle inequality, the paper needs a much more
detailed/systematic exploration and discussion of the relationship between triangles and geometry. This
relation is currently vague, and citing the triangle inequality does not provide quantitative evidence of their
connection.”

We would like to notice that in the configuration model the link multiplicity vanishes in the thermodynamic
limit and, therefore, such model is not a good candidate to have an underlying geometry. In networks
with finite clustering, like in our model, there is typically a non-trivial relation between mkk′ and k and
k′, although this relation is, in general, difficult to calculate. In general, the problem of measuring the
metricity of network topologies is an extremely difficult problem that requires a research program on its own.
Nevertheless, very useful information can be obtained from the properties of the clustering in the network.
The relation between clustering and geometry has been analysed in detail in our previous publications. In the
current paper, we take the relation clustering/metric space for granted and we focus on the relation between
weights and geometry. It is true that in our geometric models clustering is a by-product of the metric space
(and so of the triangle inequality), which is, by the way, very convenient from a mathematical point of
view, as it induces effective three body interactions from pairwise ones. However, in our first publication
on this topic (Ref. [4]) we found that the properties of the degree-dependent clustering coefficient of some
real complex networks are compatible with the existence of a hidden metric space ruling the probability of
existence of links between nodes. Interestingly, we also found that the Internet fits particularly well within
this new paradigm and its inferred embedding in the hyperbolic plane (see Ref. [1]) has excellent routing
properties in this space. We have also developed both static and growing models (like the one in Ref. [5])
showing that our models are able to reproduce the topologies of real complex networks extremely well.

3.E “In contrast to triangles, edge length is a direct measurement of geometry and may provide a more
straightforward description for how weights and geometry are coupled. That is, are weights larger for
shorter edges? Studying edge lengths may also help address comment A (the origin of clustering), since it
would be helpful to understand if triangles primarily exist between node triples (i, j, k) that are nearby in
the metric space, and if so, do they primarily involve nodes with small ∆θ or nodes with large degrees.”

We thank the reviewer for pointing out a concept that may not have been sufficiently well explained in our
manuscript. The distance between nodes in the metric space does not correspond to the actual geographical
distance between, say, airports in the US airports network. Rather, it is an abstract distance that quantifies
the likelihood of interactions between nodes. Consequently, a direct measurement is not available and this
is why we turned to triangles—as a reflection of the triangle inequality in the metric space—as a proxy
to estimate qualitatively the distance between nodes (i.e., close or distant). To answer directly to the
reviewer’s first question, Eq. (2) in the manuscript stipulates that the weight between connected nodes
should decrease with increasing distance between them in the hidden metric space.

Triangles between node triples (i, j, k) exist with probability p(χij)p(χjk)p(χik), a quantity that essentially
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Figure 1: Average degree of nodes in triangles that violate the triangle inequality (〈k〉TIV) and in
all triangles (〈k〉Triangle) for the networks considered in the main text. The average is performed by
sampling over triangles which implies that the degree of a node is weighted by the number of triangles
to which it participates (as in Fig. 1 of the main text). The dashed line shows the fraction of triangles
that violate the triangle inequality when using the inferred value αreal.

depends on the ratios ∆θij

κiκj
, ∆θjk

κjκk
and ∆θik

κiκk
. In other words, triples with low ∆θs will likely form a triangle

regardless of their expected degrees just as triples with high expected degrees will likely form a triangle
regardless of their position on the circle S1. Similarly, the probability for triangles involving two hubs and
one low degree node will not strongly depend on the relative position of the nodes on the circle. However,
triples with one hub and two low degree nodes will typically not form triangles unless the two low degree
nodes are very close along the circle. In fact, this effect contributes greatly to explain why the degree-
dependent clustering c̄(k) is a decreasing function of k for all networks considered in the manuscript (see
Supplementary Figures 6–11).

3.F “It may also be informative to study the way in which triangle inequalities are violated. For example,
is the inequality first violated for triangles involving nearby nodes or those that involve distant nodes? Is
the inequality first violated for triangles involving hubs or those that do not involve hubs.”

This is a very interesting question. The triangle inequality violation curves are used to find the parameter
αreal of a given network. Once this value is found, the violation of the triangle inequality depends essentially
on the level of noise in the system 〈ε2〉 through the term in the right hand side of Eq. (7). To a lesser
extent, the violation may also be due to the fact that the hidden variables κ and σ are approximated by
the actual degree and the strength, respectively, of nodes. For most of the analysed real networks, the
percentage of violations is very small (of the order of few percent) whereas in the case of the cargo ships
network it is close to 20%, due to the high level of noise present in the system. In short, our model predicts
that there should not be any dependence on the degree in the nodes belonging to triangles that violate the
triangle inequality. To test this prediction, we have measured explicitly the average degree of such nodes
as compared to the average degree of nodes in all triangles (see Fig. 1). In many cases the average degree
is very similar, thus confirming our prediction. The largest discrepancy is found in the metabolic network.
However, notice that this network has a very small percentage of violations, which makes it more prone to
statistical fluctuations. We have added a discussion in the new version of the Supplementary Information
to clarify this point.

3.G “Abstract line 3: The authors do not “prove” their model to be the “most” general and versatile
model.”

Our claim about the generality and versatility of our model is supported by the following properties:



1. Our model can fix in an arbitrary way the joint distribution ρ(κ, σ), thus allowing to control the
degree and strength distributions and any possible form of correlations (positive or negative) among
degree and strength. In particular, ρ(κ, σ) can take the form of correlations observed in real networks.

2. With strength and degree fixed, it can tune the coupling between weights and metric space through
the parameter α and so reproduce the triangle inequality violation curves of real networks, as shown
in Fig. 3.

3. The model can adjust the level of noise in the system through the parameter 〈ε2〉. While noise is
always present in real systems, it is usually not even considered in other models of weighted networks.

4. The model reproduces very well many other properties of real networks, degree-degree correlations,
degree-dependent clustering coefficient, betweenness centrality (see for instance the Supplementary
Information of Ref. [1]), global weight distribution, disparity measure, etc.

To the best of our knowledge, none of the models proposed in the literature satisfies all these characteristics
simultaneously. In the new version of the manuscript, we have replaced the sentence “we introduce the
most general and versatile class of weighted networks...” by “we introduce a very general and versatile class
of weighted networks...”

3.H “Sec. II - for many networks, multiplicity m and kikj are highly correlated, implying that sampling of
biased on m is similar to sampling with a bias on kikj . It is worth noting how normalisation according to
kikj overcomes this bias. ”

Notice also that since we measure weights normalised by the average weight ω̄(kk′), a biased sampling
over m should be equivalent to a uniform sampling provided there is no metric space dependence on the
weights. Any deviation indicates correlations between clustering and weights.

3.I “Sec. II - Does this normalisation help address the goal of discerning the dependence of edge weights
on ∆θ versus ki and kj?”

Yes it does. It has been observed that the average weight of links whose end nodes have degrees k and
k′ scales as ω̄(kk′) ∼ (kk′)τ where τ = 0.5 ± 0.1 in the case of the international airports network (see
Ref. [11]). However, we found in all our datasets that while the average weight does depend on the
product kk′, this dependency cannot be summarised in a form as simple as the one proposed in Ref. [11].
For instance, two different scaling regimes could be observed in some datasets. Consequently, we decided
to let the datasets speak by themselves by not imposing a specific analytical form for the dependency of
the average weight over kk′ and simply divide the weights by the average ω̄(kk′). By doing so, we removed
the influence of the topology on the weights, which allows to unveil their metric origin.

3.J “Sec. III, Eq. 2 - secondary hidden parameters σi and σj are defined for edge weights, however, it is
later assumed that σj = akηj . Why define them at all?”

We agree with the reviewer that the specific application of our model in the manuscript does not require a
second hidden variable σ since it is linked to the first hidden variable κ via a deterministic relation σ = aκη.
However, as demonstrated in the Supplementary Information, the second hidden variables, σ, correspond
to the expected strength of nodes regardless of the relation with the first hidden variable κ. In other words,
our model is much more general and versatile and we consider that this feature is worth mentioning in the
manuscript.

3.K “Sec. III - “given second moment 〈ε2〉” How is this chosen? Is it independent of ki, kj , and α?”

The second moment 〈ε2〉 is a global parameter of the model and, as such, is independent of the degree of
nodes. However, it is dependent in the coupling parameter α between the weights and the metric space.
The details of how the value of 〈ε2〉 is chosen is explained in detail in the Supplementary Information.

3.L “Sec. III - The statement “All the theoretical predictions are confirmed in Supplementary Figure 1.”
should be made more precise. i.e., what theoretical predictions? Scaling results?”
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Figure 2: α-dependent terms of the right hand side of Eq. (1) as a function of α for the real networks
considered in the main text.

All the theoretical predictions are derived in the Supplementary Information and are summarised in Sec. III
of the manuscript. We have modified the sentence the reviewer is referring to accordingly.

3.M “Fig. 3 - The authors need to give a complete explanation of “atypical topological features”.”

We refer the reviewer to our answer to the comment 2.C.

3.N “Fig. 3 - Why do some TIV curves increase when α ∼ 1?”

The increase of TIV (α) close to α = 1 on Figs. 3a–b is expected and is in fact a consequence of Eq. (7)
and of our our choice of the probability of connection [i.e., Eq. (3)]. Indeed, substituting Supp. Eq. (23)
in Eq. (7) in the main text and neglecting the noise term (whose mean value is close to zero) we obtain

ln

ωijωjk
ωik

(
κj
σj

)2
 ≤ R

2 α+ ln
(

sin
[(1− α)π

β

])
+ ln

(
β
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)
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Figure 2 below shows the behaviour of α-dependent terms of the right hand side of Eq. (1) for the real
networks considered in the main text. For low values of α, we see that the right hand side of Eq. (1) is
an increasing function which implies that TIV (α) decreases with increasing α (i.e., it is more and more
difficult to violate the triangle inequality as α increases). However, all curves reach a plateau at α ' 0.8
after which they start to decrease. As expected, these plateaus correspond to the points where the TIV (α)
start to increase (for some networks this increase is not visible due to the linear scale of the y axis). This
discussion has been added to the Supplementary Information.

3.O “12. Discussion under FIg. 4 - “weigths” -> “weights””

The typo has been corrected.

3.P “The authors do a good job of citing previous research.”

We thank the reviewer for this appreciation.

3.Q “It may be helpful to discuss the triangle inequality and clustering in the abstract/intro given that it is
a central topic of the paper. Also, I found the intro/abstract to not clearly identify new scientific insights
allowed by the new model.”

We thank the reviewer for the suggestion and we have mentioned the triangle inequality and emphasised
more on the scientific insights in the abstract, in the introduction and in the discussion.

3.R “This research is an important and exciting area of network science, and the work is very high quality
- both in philosophy and execution. However, I find the current paper to be lacking the “wow” factor that



would justify publication in Nature Communications. The authors have made an interesting observation and
developed a state-of-the-art model for it, but they have not illustrated this observation to have important
consequences or provide useful insights.”

We thank the reviewer for her/his kinds words about the quality of our work. However, we believe that
a “wow” factor is a very subjective feeling, especially as other readers (like reviewer #2) might think
differently. As mentioned in our answer to comment 3.C, we agree with the reviewer that we may have
lacked in explaining clearly the implications of our work for the understanding of real weighted networks,
which we believe are remarkable.

We would like to stress that, in our opinion, the main contribution of our work is the empirical observation
that weights in complex networks are influenced in a non-trivial way by some underlying metric structure.
As far as we know, this is a novel and important result that extends the hidden/latent geometry paradigm
to weighted complex networks. Of course, such empirical result claims for a modelling that would take it
into account. This is the reason why we introduce our model, which is able to reproduce the coupling with
the metric space in a very simple and elegant way. Our model guaranties that we can fix the local properties
of the nodes, that is, their joint degree-strength distribution similar to the one of a real network under
study and, simultaneously, change in an independent manner the coupling of the weights with the metric
space. This critical property is the one allowing us to gauge the effect of the metric space in real systems.
This very same feature is also present in our different models of networks embedded in hidden (hyperbolic)
spaces. There, too, we can fix the degree distribution and modify the coupling between topology and metric
space so that different levels of clustering arise. This has been widely acknowledged by the community of
network scientists and accepted as a new paradigm to describe and characterise complex networks. Our
work here goes in the same direction and we are convinced that it will become the standard model for
weighted networks embedded in metric spaces in the near future.

At the same time, our equations can be understood as the new generation of gravity models applicable
to very different domains, including Biology, Information and Communication Technologies, and Social
Systems. Current gravity laws are prescribed to the Social Sciences and predict successfully the volume of
flows between elements but cannot explain the observed topology of the interactions among them. Our
contribution overcomes this limitation and offers for the first time a gravity model that can reproduce
both the existence and the intensity of interactions. This opens a new line of theoretic research on the
coupling between topology, weighted structure, and geometry in complex networks. On the other hand,
our work opens the possibility to use information encoded in the weights of the links to find more accurate
embeddings of real networks. We can then use these improved embeddings to detect network communities,
missing links and, for the first time, give estimates of the weights of such missing links, and to implement
navigation and searching protocols, such as greedy routing, which take into account not only the existence
of connections but also their intensity. We have modified the discussion section of our paper to emphasise
these future research directions.
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Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

After having read the new version of the manuscript and the authors' responses to the referees' 

remarks, I remain skeptical about the significance of these results and their suitability for Nature 

Communications. As a consequence, I still do not recommend publication of this manuscript.  

 

- In their reply 1.E, the authors write "...the concept of a hidden metric space can also be seen as 

a mathematical tool that can be leveraged to generate realistic networks. For instance, it is the 

only framework that allows to generate strong clustering based on pairwise interactions only (due 

to the triangle inequality of the metric space)".  

This is not true: even random graphs with given degrees can have a large clustering. This is not 

often recognised, but dates back to Park and Newman's PRE paper "Origin of degree correlations in 

Internet and other networks". The reason why this result is overlooked is the widespread use of 

the approximation that factorizes the connection probability into the product of the end-point 

degrees. As originally showed by Maslov, Sneppen and collaborators, this approximation is 

inconsistent with the large value of the maximum degree in real-world networks. If realistic degree 

sequences are to be replicated, one needs to go beyond the naive factorized approximation. The 

resulting probability of connection is highly nonlinear (it has a Fermi-function shape) and was 

derived by Park and Newman in the paper above and in many subsequent papers. This probability 

function is the correct one for a network with broad degree distribution and generates a high level 

of clustering (often matching perfectly the empirical clustering), even if it only accounts for local 

(degree) properties of nodes, without resorting to any metric pairwise property.  

 

- Therefore the apparent need to introduce metric spaces to replicate high clustering might be 

merely an artefact of the (incorrect) approximation of the connection probability. Note that, even if 

it is often said that the factorized probability works well for "sparse networks", this is actually 

incorrect: a factorized probability does generate sparse networks, but these networks are however 

unrealistic in terms of their maximum degree. In other words, real-world networks, although 

sparse in most cases, are incompatible with the factorized approximation. Compensating this 

unrealistic approximation with the introduction of a metric space in order to retrieve an otherwise 

unexplained large clustering is scientifically incorrect and misleading. The large clustering (or at 

least a generous portion of it) would more parsimoniously be explained by using only local 

properties (e.g. degrees), along with the correct nonlinear connection probability accounting for 

them.  

 

- Even though such a factorized approximation is never introduced explicitly as a building block of 

the model described in this paper, an equivalent problem is present here in terms of the expected 

weight being linearly dependent on the expected strengths. Indeed, as a consequence of this 

approximation, in the model proposed the expected strengths turn out to be proportional to the 

corresponding hidden variables, apparently justifying the claim that their model can account for 

any (joint) degree and strength distribution. Again, this claim of generality is not founded and the 

resulting metric "patterns" might be an artefact compensating for the factorised choice of the 

expected weights.  

 

- Additionally, since the authors want to decouple local node effects (degrees and strengths) from 

the (postulated) metric properties, it is not clear why they preliminary filter most of their networks 

with the "disparity filter" (by the way, why don't they do this for all networks? In the SI they say 

that some networks have been filtered this way, and others not, without explanation). By using 

this filter, the local effects should in principle vanish, so they should be left with "residual 

networks" where local node properties are no longer relevant and should not be further controlled 

for. So why are they applying their model to these filtered networks? This procedure is unclear to 

me. In any case, it raises the doubt whether the empirical "patterns" that are documented here 

are actually properties of how the disparity filter operates, rather than properties of the data 



themselves.  

 

- By the way, the disparity filter assumes that the total strength s of a node is uniformly randomly 

broken up into the weights of the k edges coming out of a node, irrespective of the degrees at the 

other endpoint of these edges. This again appears to contrast the well-known fact, used also 

elsewhere in this paper, that connection probabilities should depend on the degrees at both 

endpoints of an edge. So here I see some inconsistency in the way data are analysed.  

 

- Finally, it is not true that this is the first "generation of gravity models" assuming that also the 

probability of connections should be a gravity-like function. There is vast literature about the so-

called zero-inflated gravity models which do have a similar dependence of link probabilities on the 

gravity equation, thus replicating the observed network density (see for instance the published 

papers by Fagiolo (http://arxiv.org/abs/0908.2086) and Fagiolo and Duenas 

(https://arxiv.org/abs/1112.2867) and references therein.  

 

In conclusion, I still believe that this papers does not introduce a really new and general paradigm 

to explain the origin of weights in real networks. It might be forcing the use of metric spaces to 

compensate for some implicit proportionality assumption (for sure it is partially doing so), it might 

be partially looking at spurious patterns created by the filtering method used, and it is not the 

first/only model that has been proposed to understand the empirical weights in weighted 

networks.  

 

Reviewer #2 decided to provide confidential remarks to the editor only. In them, they continue to 

praise the value of your work, and believes that your contribution deserves publication in Nature 

Communications. At the same time, they explain that in their view some of the criticisms of 

Reviewers #1 and #3 may be based on the natural difficulty of the language required to describe 

hyperbolic embeddings, and because of the objective difficulty in interpreting what an underlying 

and new hyperbolic metric structure is really telling us about the networks under study. And while 

they believe that you did already a very good job regarding the former point, in terms of 

explaining your method, they concede that regarding the latter a solid answer to the origin of the 

weights and direct intepretation of the uncovered hyperbolic structure has not been yet provided. 

Nonetheless, they remain positive towards the work in light of the potential to stimulate new work 

that it has.  

 

 

Reviewer #3 (Remarks to the Author):  

 

 

I have examined the authors' revised manuscript and their responses to my comments. Although 

several of my concerns have been adequately addressed, the authors did not directly address 

several of the main issues that I previously raised.  

 

As I previously stated, my overall feeling is that the paper provides a nice contribution to this field 

and deserves publication in some form and at some venue. However, I cannot support publication 

in Nature Communications until the issues below are carefully addressed in the manuscript. That 

said, I now believe the manuscript to be sufficiently impactful to warrant publication in Nature 

Communications. My recommendation is now 'revise and resubmit.'  

 

 

 

Previous concerns not adequately addressed:  

 

(3.A). I believe the authors missed my main concern, which regards my previous statement 'It is 

unclear whether or not the hyperbolic geometry modeling approach provides further insight than 

what is possible by studying the dependence of weights on node degrees and triangle participation 



(i.e., neighbourhood overlap).' I will further explain this concern.  

 

Specifically, given the observations that node degree and triangle participation both influence edge 

weights, the simplest model would be one in which weights depend only on two types of variables: 

node degrees and triangle participation. My concern regards whether or not the complicated 

latent-geometry model satisfies the Occam's razor principle. I believe that it does, but given the 

complexity of their model, the authors should provide strong evidence and a clear discussion for 

why the hyperbolic-geometry model is superior to a simpler alternative.  

 

I point out that a correlation between triangle participation and edge weight is widely believed, 

despite -- as identified by the authors -- some results in [19] are lacking evidence since they do 

not isolate the effect some of their experiments. I agree that the authors conduct a more 

principled experiment with Fig. 1, but the main message of Fig. 1 (i.e., triangles influence edge 

weights) is not a new idea. It is actually the focus of [19], which is a paper that includes more 

results than the single experiment upon which the authors improve.  

 

The authors' novel claim with Fig. 1 is that a hidden geometry is the origin of this phenomenon. 

That is, the correlation between triangle participation and edge weight is (or can be) an artifact of 

a correlation between geometry and edge weight. I believe such a claim requires two types of 

support:  

(i) The hidden geometry model can account for the correlation between edge weight and triangle 

participation.  

(ii) The hidden geometry model provides a 'better' explanation versus a much simpler model in 

which edge weights only depend on node degrees and triangle participation.  

 

(i) is strongly supported by their study of TIV curves. In my opinion, (ii) is insufficiently described 

in the paper. That is, the authors do not clearly explain why adopting a complicated latent-space 

model for edge weights is superior to a simpler alternative model in which one only takes into 

account node degrees and triangle participation.  

 

Finally, I remind the authors that triangle participation is by definition a topological - not 

geometrical - property, and in principle, there can simultaneously exist several sources for the 

appearance of triangles in networks. The authors nicely illustrate one source: a latent geometry. 

However, it is possible for other sources to exist, such as dynamical processes on the network 

(e.g., processes for triangle closure that are independent of the metric space). Therefore, the 

correlation between triangles and weights (e.g., Fig. 1) can indicate a relation between a latent 

geometry and weights, or it can simply indicate a correlation between triangles and weights (that 

is, one could argue that the latent-geometry origin of triangles is superfluous).  

 

This issue should be addressed in the paper, and I leave it to the authors to decide 'how' to do 

this. I can suggest some possible extensions that may help support claim (ii). First, I suspect Fig. 

3d can be interpreted as a measure for determining whether the correlation between triangles and 

weights is a fundamental relationship, or if it is an artifact of a latent geometry. Specifically, for E. 

Coli and the brain, it appears that the correlation between triangles and edge weights can be 

explained entirely by the latent geometry. If the authors agree, then this should be discussed. 

Second, I would urge the authors to conduct a small simulation to compare their latent-geometry 

model to a simpler model in which edge weights only depend on node degree and triangle 

participation. I believe it would be interesting (and very strong evidence) if TIV curves can 

discriminate whether the organization of edge weights is better explained by triangle participation 

or by a latent geometry.  

 

 

 

(3.C) The authors do a good job of further describing potential applications of their work. They 

may find it helpful to briefly discuss the implications of this work toward previous research on link 



prediction, since triangle participation is widely-adopted as a leading approach:  

 

Liben‐Nowell, D., & Kleinberg, J. (2007). The link‐prediction problem for social networks. Journal of 

the American society for information science and technology, 58(7), 1019-1031.  

Lü, L., & Zhou, T. (2010). Link prediction in weighted networks: The role of weak ties. EPL 

(Europhysics Letters), 89(1), 18001.  

Zhao, Jing, Lili Miao, Jian Yang, Haiyang Fang, Qian-Ming Zhang, Min Nie, Petter Holme, and Tao 

Zhou. "Prediction of links and weights in networks by reliable routes." Scientific reports 5 (2015).  

 

Importantly, the last method specifically aims to predict edge weights, and so the authors' claim 

that their method 'for the first time, will provide estimates for the weights of such missing links' is 

false. In fact, the authors do not actually use their method to do link prediction, so this claim 

about a potential application is an overstatement.  

 

 

 

(3.D). The authors have chosen to still not provide a technical description in the paper for how 

clustering arises for their new model. Sec. II begins: 'Clustering, as a reflection of the triangle 

inequality, is the key topological property coupling the bare topology of a complex system and its 

effective underlying metric space [6]. In this context, the triangle inequality stipulates that if 

nodes A and B are close, and nodes A and C are also close, we expect nodes B and C to be close 

as well; triangles are therefore more likely to exist between nodes that are nearby.'  

 

This extremely simplistic explanation is appropriate in Sec. II since the authors have not yet 

defined their model. However, a similarly simplistic explanation is again stated in Sec. IV.A (even 

after the model is introduced). At this point, I would have found a more technical description for 

the appearance of triangles very helpful. If the derivation is identical to that in [6], it would helpful 

to point to the relevant equations in [6] (of course, this requires the notation to be identical), 

otherwise I suggest including a brief summary in Sec. IV or an appendix. For example, I believe it 

would be helpful to include some of the discussion in the authors' second paragraph of their 

response to my comment (3.E).  

 

 

 

(3.E). I appreciate the more-in-depth description, which will allow me to more precisely state my 

main concern, which was not addressed in the authors' response.  

 

Specifically, if the latent-geometry model implies that the weight w_{ij} of edge (i,j) depends on 

the variable \psi_{ij} = \Delta_{ij}/\kappa_j\kappa_j , then the accuracy and inference of the 

model can be directly explored by studying the relationship between these two variables. Instead, 

the authors study the nature of edge weights w_{ij} through studying triangles. Again, with the 

Occam's razor principle in mind, it is important that the authors provide evidence and explain in 

the manuscript why it is beneficial to validate and fit their model using the more complicated 

approach of studying triangles versus the simpler approach of studying edges.  

 

In other words, the most direct way to determine if there if is a relationship between the latent 

geometry distances x_{ij} and weights w_{ij} is simply to compare these - why resort to studying 

triangle inequalities?  

 

As a related comment: In their response to my previous comment (3.E), the authors write 

"Rather, it is an abstract distance that quantifies the likelihood of interactions between nodes. 

Consequently, a direct measurement is not available ... " I am confused why a direct measurement 

is not available. If one constructs an embedding, then one has x_{ij}.  

 

 



 

Issues regarding new material:  

 

Paragraph just before II: "This model has the critical ability to discriminate between purely local 

properties (e.g., related to the degree and strength of nodes) and the coupling of the topology and 

of the weighted organisation with the metric space." -- I would say that triangle participation is a 

local property too; it depends only on a node and its neighbors. Is local vs. nonlocal really the 

focus of the paper or is it geometric vs non-geometric?  

 

 

 



1. Replies to the comments of Reviewer #1

1.A After having read the new version of the manuscript and the authors’ responses to the reviewers’
remarks, I remain skeptical about the significance of these results and their suitability for Nature Commu-
nications. As a consequence, I still do not recommend publication of this manuscript.

We thank the reviewer for his/her comments on our manuscript. Below, we provide detailed responses to
all of his/her criticisms and hope that the reviewer will be convinced by our arguments.

1.B In their reply 1.E, the authors write “...the concept of a hidden metric space can also be seen as
a mathematical tool that can be leveraged to generate realistic networks. For instance, it is the only
framework that allows to generate strong clustering based on pairwise interactions only (due to the triangle
inequality of the metric space)”.

This is not true: even random graphs with given degrees can have a large clustering. This is not often
recognised, but dates back to Park and Newman’s PRE paper “Origin of degree correlations in Internet and
other networks”. The reason why this result is overlooked is the widespread use of the approximation that
factorizes the connection probability into the product of the end-point degrees. As originally showed by
Maslov, Sneppen and collaborators, this approximation is inconsistent with the large value of the maximum
degree in real-world networks. If realistic degree sequences are to be replicated, one needs to go beyond the
naive factorized approximation. The resulting probability of connection is highly nonlinear (it has a Fermi-
function shape) and was derived by Park and Newman in the paper above and in many subsequent papers.
This probability function is the correct one for a network with broad degree distribution and generates a
high level of clustering (often matching perfectly the empirical clustering), even if it only accounts for local
(degree) properties of nodes, without resorting to any metric pairwise property.

Therefore the apparent need to introduce metric spaces to replicate high clustering might be merely an
artefact of the (incorrect) approximation of the connection probability. Note that, even if it is often said
that the factorized probability works well for “sparse networks”, this is actually incorrect: a factorized
probability does generate sparse networks, but these networks are however unrealistic in terms of their
maximum degree. In other words, real-world networks, although sparse in most cases, are incompatible
with the factorized approximation. Compensating this unrealistic approximation with the introduction
of a metric space in order to retrieve an otherwise unexplained large clustering is scientifically incorrect
and misleading. The large clustering (or at least a generous portion of it) would more parsimoniously
be explained by using only local properties (e.g. degrees), along with the correct nonlinear connection
probability accounting for them.

We partly agree with the reviewer in that heterogeneous degree distributions generate clustering. However,
his/her complain in this regard is a bit paradoxical given that one of us wrote a paper in 2013 precisely
calculating the clustering coefficient of scale-free networks under the configuration model, by explicitly
considering the connection probability derived in the work by Park and Newman [see Phys. Rev. E 86,
026120 (2012)]. In that work, we showed that, indeed, clustering can be important in heterogeneous random
graphs with γ close to 2. However, we also showed that clustering always vanishes in the thermodynamic
limit (even though slowly in some cases). In any case, the reviewer is confused about the origin of clustering
as a result of the non-factorization of the connection probability. In fact, it is rather the opposite as the
formula for the clustering coefficient obtained by using the factorized connection probability [see Eq. (1)
in Phys. Rev. E 86, 026120 (2012)] leads to an overestimation of the clustering coefficient in general
and to a diverging clustering coefficient for γ < 7/3, a result that is obviously wrong. The non-factorized
connection probability arises as a consequence of the closure of the network when there are degrees above√
N in the network, leading to (negative) structural correlations and, incidentally, to the correct expression

for the clustering coefficient, which is obviously non-diverging.

In any case, while some portion of the clustering observed in real networks could be explained by these
finite size effects, it is typically much higher than the clustering observed in randomized versions of the
same networks. To give support to this statement, we have randomized many real world networks, including
those used in our study, by preserving, in one case, the degree distribution and, in a second case, the degree
distribution and also the degree-degree correlations of the real networks. Randomizations are performed
using the software developed in Scientific Reports 3, 2517 (2013) and Nature Communications 6, 8627
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Figure 1: Average local clustering coefficient measured for original real networks and their randomized
counterparts. Both randomizations, CM and CCM, preserve the degree distribution and the CCM ad-
ditionally preserves the degree-degree correlations. Results for the randomized networks were obtained
by averaging over 100 realizations and the error bars show the 5th and 95th percentiles.

(2015). Figures 1 and 2 show the results. We observe that, in all networks, the clustering coefficient is
much larger than in the randomized versions (by more than three sigmas). These results are also valid in
most of the real networks we are aware of.

In the light of these results, it is thus important to have models able to explain clustering that remain
high and finite in the infinite size limit. In this respect, metric spaces (hidden or not) underlying complex
networks provide the simplest explanation for its origin. The reason is that metric spaces induce many body
interactions out of pairwise interactions only. In a network, one can think of triangles as some evidence of
three body interactions among the elements of the network. We are then faced with only two possibilities,
either we have a mechanism with genuine three (or more) body interactions, which is a priori unknown,
or we assume the existence of a metric space. In our opinion, the latter option is the simplest and most
natural. It also allows for analytic tractability and, thus, the ability to compare with real systems. In this
respect, we would like to mention our result in Phys. Rev. Lett. 100, 78701 (2008), where we show that
the self-similarity properties of several real complex networks can be accounted for with the hypothesis of
hidden metric spaces underlying the networks. Besides, when mapping real networks into our models, like
the Internet [Nature Communications 1, 62 (2010)], metabolic networks [Molecular BioSystems 8, 843-850
(2012)], or the world trade web [Scientific Reports 6, 33441 (2016)], and compare their embeddings with
metadata not included in the graph itself, like country affiliation or biological pathway, we find a very
strong congruency, suggesting that our embeddings are not an artifact of the method and reflect the real
organization of these systems.

As a final note, during these years working in the field of complex systems and complex networks, we have
gained a solid reputation as serious scientists. In particular, the quality of our studies about the connection
between the topology of complex networks and hidden metric spaces is beyond doubt in the community and
our works have been published in leading international journals including Nature, Nature Physics, Nature
Communications, Physical Review Letters, and others. Therefore, we would like to ask the reviewer to
refrain from using statements of the type “...scientifically incorrect and misleading.” about our work.

1.C Even though such a factorized approximation is never introduced explicitly as a building block of the
model described in this paper, an equivalent problem is present here in terms of the expected weight
being linearly dependent on the expected strengths. Indeed, as a consequence of this approximation,
in the model proposed the expected strengths turn out to be proportional to the corresponding hidden
variables, apparently justifying the claim that their model can account for any (joint) degree and strength
distribution. Again, this claim of generality is not founded and the resulting metric “patterns” might be
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Figure 2: Degree-dependent average local clustering for various real networks. See the caption of
Fig. 1 for a description of the randomization procedures.

an artefact compensating for the factorised choice of the expected weights.

We should stress that, in our model, weights do not factorize because the distance between two nodes in
the metric space cannot be factorized. The reviewer may have in mind another of our previous works [Phys.
Rev. E 74, 055101(R) (2006)], where we show that weighted networks have structural correlations. It is
important, however, to realize that such structural correlations appear when one considers actual degrees
and strengths of nodes, and not their expected values. This is quite different from the case of the bare
topology. To generate connections in a graph, the connection probability must be bounded between zero
and one, and thus the connection probability cannot be factorized even at the level of hidden variables (or
expected values) in strongly heterogeneous networks. In the case of weights, there is no such restriction
and expected weights among nodes can be defined in an arbitrary way. Nevertheless, structural correlations
at the weighted level will appear due to structural constraints (see Fig. 1 in PRE 74, 055101(R) (2006)).

As for our claim about the ability of our model to generate networks with desired correlations between
strength and degree, we first notice that, in Eq. (11) of the Supplementary Information, we provide the
exact probability for a node with hidden variables κ and σ to have degree and strength k and s, respectively.



Combining this result with the joint distribution of hidden variables ρ(κ, σ), we obtain the joint degree-
strength distribution. Given that we have complete freedom to choose ρ(κ, σ), we can control the level of
correlations between k and s, as claimed in the paper. In particular, we can chose σ ∝ κη, which translate
into s̄(k) ∝ kη, as corroborated by our numerical simulations shown in the Supplementary Information.
Note that our model can actually generate networks with any value of the exponent η, even if η < 1 (see
Fig. S13), something that, to the best of our knowledge, cannot be accomplished with other models of
weighted networks.

1.D Additionally, since the authors want to decouple local node effects (degrees and strengths) from the
(postulated) metric properties, it is not clear why they preliminary filter most of their networks with the
“disparity filter” (by the way, why don’t they do this for all networks? In the SI they say that some networks
have been filtered this way, and others not, without explanation). By using this filter, the local effects
should in principle vanish, so they should be left with “residual networks” where local node properties are
no longer relevant and should not be further controlled for. So why are they applying their model to these
filtered networks? This procedure is unclear to me. In any case, it raises the doubt whether the empirical
“patterns” that are documented here are actually properties of how the disparity filter operates, rather than
properties of the data themselves.

The reason to use the disparity filter in some of the networks is related to the huge average degree of
some of these networks and the fact that most of the links contributing to such large average degree
are not significantly related to the main functionality of the network. For instance, in the US airport
network, there are a huge number of connections between airports with a number of seats of the order
of tens during one whole year. All these connections are there due to private flights that, obviously do
not follow the same patterns of connections of commercial (and so regular) airline connections between
airports. The same applies to other networks, like the world trade web, where we find an enormous number
of trade interactions between countries with a total amount traded of the order of 1 million dollars or less.
Such trade interactions are extremely volatile and appear and disappear every year and cannot represent a
solid trade interaction between the countries to be exploited in the recognition of characteristic interaction
patterns. The disparity filter is extremely good at removing such noisy links, revealing the fundamental
structure of the system. It is not true that, by using the filter, local effects vanish or that it leads to
residual networks. In fact, in PNAS 106, 6483-6488 (2009), we showed that the disparity filter retains a
significant fraction of the total weight in the system without altering the local properties (e.g. clustering),
the non-linear correlations between strength and degree, and the strength and weight distributions, while
reducing significantly the number of links and, thus, revealing the fundamental degree distribution of the
network. In this respect, it is interesting to mention one of the results in our last paper on the world
trade web [Scientific Reports 6, 33441 (2016)]. In this work, we measured the correlation between degrees
and countries’ gross domestic product (GDP) for the original network and for the network filtered by our
disparity filter. Interestingly, the Pearson correlation coefficient in the case of the original network is of the
order 0.2 ∼ 0.4 depending on the year, whereas for the filtered network takes values of the order 0.8 ∼ 0.9.
This simple test indicates that the topology of the filtered network is significantly more congruent with
real economic factors than the original one. In the new version of the manuscript, we have added a similar
discussion about the use of the disparity filter.

1.E By the way, the disparity filter assumes that the total strength s of a node is uniformly randomly broken
up into the weights of the k edges coming out of a node, irrespective of the degrees at the other endpoint
of these edges. This again appears to contrast the well-known fact, used also elsewhere in this paper, that
connection probabilities should depend on the degrees at both endpoints of an edge. So here I see some
inconsistency in the way data are analysed.

Please notice that, in the disparity filter, the relevance of a link is addressed from both end nodes, and
that it is removed only if it is deemed irrelevant for both of them. This procedure restores the symmetry
the reviewer was concerned about.

1.F Finally, it is not true that this is the first “generation of gravity models” assuming that also the
probability of connections should be a gravity-like function. There is vast literature about the so-called
zero-inflated gravity models which do have a similar dependence of link probabilities on the gravity equa-
tion, thus replicating the observed network density (see for instance the published papers by Fagiolo
(http://arxiv.org/abs/0908.2086) and Fagiolo and Duenas (https://arxiv.org/abs/1112.2867) and refer-



ences therein.

We thank the reviewer for pointing out these interesting contributions. We would like to stress that nowhere
in the manuscript do we claim that it is the “first generation of gravity models”; we rather state that our
model offers a “new generation of gravity models”. The only “first” claimed in the manuscript concerns
the possibility to provide estimates of the weights of missing links in the framework of embeddings of real
networks. This wording was a bit misleading and has been modified accordingly. In the new version of the
manuscript, we have added a citation to the work by Fagiolo and Dueñas.

In any case, previous works were not successful in replicating simultaneously the weighted structure and the
topology of complex networks using gravity models, as explicitly recognized for instance in one of the papers
pointed out by the referee, Fagiolo and Dueñas (https://arxiv.org/abs/1112.2867): “More generally, the
GM performs very badly when asked to predict the presence of a link, or the level of the trade flow it
carries, whenever the binary structure must be simultaneously estimated. Therefore, the GM turns out
to be a good model for estimating trade flows, but not to explain why a link in the ITN gets formed
and persists over time”. In contrast, our framework, based on gravity models both for the weights and for
the existence of links, not only reproduces well the weighted structure of complex networks but also their
topological properties, much beyond the network density which is a very rough topological feature easily
reproducible if other topological properties are overlooked.

1.G In conclusion, I still believe that this papers does not introduce a really new and general paradigm to
explain the origin of weights in real networks. It might be forcing the use of metric spaces to compensate
for some implicit proportionality assumption (for sure it is partially doing so), it might be partially looking
at spurious patterns created by the filtering method used, and it is not the first/only model that has been
proposed to understand the empirical weights in weighted networks.

We hope we have clarified all reviewer’s concerns.

3. Replies to the comments of Reviewer #3

I have examined the authors’ revised manuscript and their responses to my comments. Although several
of my concerns have been adequately addressed, the authors did not directly address several of the main
issues that I previously raised.

As I previously stated, my overall feeling is that the paper provides a nice contribution to this field and
deserves publication in some form and at some venue. However, I cannot support publication in Nature
Communications until the issues below are carefully addressed in the manuscript. That said, I now be-
lieve the manuscript to be sufficiently impactful to warrant publication in Nature Communications. My
recommendation is now ’revise and resubmit.’

We thank the reviewer for his/her positive opinion about our work and for the very helpful and constructive
comments to improve the quality and presentation of our paper. In the new version of the manuscript, we
have followed his/her recommendations and we hope that all the reviewer’s concerns are fully addressed
and clarified.

3.A I believe the authors missed my main concern, which regards my previous statement “It is unclear
whether or not the hyperbolic geometry modeling approach provides further insight than what is possible
by studying the dependence of weights on node degrees and triangle participation (i.e., neighbourhood
overlap).” I will further explain this concern.

Specifically, given the observations that node degree and triangle participation both influence edge weights,
the simplest model would be one in which weights depend only on two types of variables: node degrees and
triangle participation. My concern regards whether or not the complicated latent-geometry model satisfies
the Occam’s razor principle. I believe that it does, but given the complexity of their model, the authors
should provide strong evidence and a clear discussion for why the hyperbolic-geometry model is superior to
a simpler alternative.

I point out that a correlation between triangle participation and edge weight is widely believed, despite –



as identified by the authors – some results in [19] are lacking evidence since they do not isolate the effect
some of their experiments. I agree that the authors conduct a more principled experiment with Fig. 1,
but the main message of Fig. 1 (i.e., triangles influence edge weights) is not a new idea. It is actually
the focus of [19], which is a paper that includes more results than the single experiment upon which the
authors improve.

The authors’ novel claim with Fig. 1 is that a hidden geometry is the origin of this phenomenon. That
is, the correlation between triangle participation and edge weight is (or can be) an artifact of a correlation
between geometry and edge weight. I believe such a claim requires two types of support:

(i) The hidden geometry model can account for the correlation between edge weight and triangle partici-
pation.
(ii) The hidden geometry model provides a “better” explanation versus a much simpler model in which
edge weights only depend on node degrees and triangle participation.

(i) is strongly supported by their study of TIV curves. In my opinion, (ii) is insufficiently described in the
paper. That is, the authors do not clearly explain why adopting a complicated latent-space model for edge
weights is superior to a simpler alternative model in which one only takes into account node degrees and
triangle participation.

Finally, I remind the authors that triangle participation is by definition a topological - not geometrical -
property, and in principle, there can simultaneously exist several sources for the appearance of triangles in
networks. The authors nicely illustrate one source: a latent geometry. However, it is possible for other
sources to exist, such as dynamical processes on the network (e.g., processes for triangle closure that are in-
dependent of the metric space). Therefore, the correlation between triangles and weights (e.g., Fig. 1) can
indicate a relation between a latent geometry and weights, or it can simply indicate a correlation between
triangles and weights (that is, one could argue that the latent-geometry origin of triangles is superfluous).

This issue should be addressed in the paper, and I leave it to the authors to decide “how” to do this.
I can suggest some possible extensions that may help support claim (ii). First, I suspect Fig. 3d can
be interpreted as a measure for determining whether the correlation between triangles and weights is a
fundamental relationship, or if it is an artifact of a latent geometry. Specifically, for E. Coli and the brain,
it appears that the correlation between triangles and edge weights can be explained entirely by the latent
geometry. If the authors agree, then this should be discussed. Second, I would urge the authors to con-
duct a small simulation to compare their latent-geometry model to a simpler model in which edge weights
only depend on node degree and triangle participation. I believe it would be interesting (and very strong
evidence) if TIV curves can discriminate whether the organization of edge weights is better explained by
triangle participation or by a latent geometry.

Thank you very much for these insightful thoughts, which are indeed very pertinent. First, we would
like to comment on our own point of view about the Occam’s razor principle. We fully agree with this
principle: simpler models should be preferred over more complicated ones if they are able to explain the
same empirical facts. However, in this case, it is not totally clear the meaning of a model being simpler
than another one. In the case of clustering, for instance, triangles in networks can be interpreted as the
signature of three body interactions. To explain this empirical fact, we have two options, either we model
the system with a genuine mechanism inducing three body interactions, which is unknown, or alternatively
we assume the existence of an underlying metric space combined with pairwise interactions, which induces
many body interactions. The question is now: is a model with pairwise interactions on a metric space
more complicated than a model with many body interactions without a metric space? In our opinion,
metric spaces combined with pairwise interactions are a much simpler explanation for the topologies of
real complex networks. Also from the mathematical point of view, this possibility is more interesting as
pairwise interactions allow for analytical treatment and, thus, a much simpler comparison with empirical
data with a limited number of model parameters. Of course, this discussion mainly applies to the bare
network topology and not to the weights. However, if we accept the existence of such metric space as an
explanation for the network topology, it seems also reasonable that the same metric space will, somehow,
influence the intensity of the interactions.

As for the specific suggestions of the reviewer about a model that would use only topological information,



we agree that this is certainly a good exercise. However, it is a difficult task, since the number of such
models one could define is very large. Paradoxically, the literature is not very generous in terms of credible
models suitable for such exercise (e.g., that do not rely on intricate dynamics to assign the weights and,
as such, would not pass the Occam’s razor principle). In any case, we have opted for the models used in
[Nature Physics 8, 429 (2012) and in PNAS 101, 3747 (2004)] and for a new one that generalizes both.
If we understand correctly the reviewer’s suggestion, the idea is to explain the observed weighted network
structure without relying on any metric space whatsoever. Therefore, we first randomize the real network
topologies preserving the degree sequence and the average clustering coefficient [for this task, we use the
software developed in Scientific Reports 3, 2517 (2013) and Nature Communications 6, 8627 (2015)]. This
step is taken to destroy any dependence on any possible metric space underlying the network. Then, we
assign weights to the connections according to the following models:

• model A: wij ∝ (kikj)θ, where ki and kj are the degrees of nodes i and j, respectively, and θ is a
model parameter;

• model B: wij ∝ (cicj)δ, where ci and cj are the clustering coefficient of nodes i and j, respectively,
and δ is a model parameter;

• model C: wij ∝ (kikj)µ(cicj)ν , and µ and ν are model parameters. This model accounts for the
fact that weights among high degree nodes are higher but also that weights among highly clustered
nodes are also higher.

For all models, the exponents θ, δ, µ and ν are chosen as those minimizing the χ2 statistic for the
corresponding dataset, and the results are shown in Figs. S14-S41 in the Supplementary Material. Although
the three models preserve the degree sequence, which is an advantage over our model, the degree-dependent
clustering of the synthetic networks is worse reproduced as compared to the one obtained with our model.
We find that models A and C can reproduce fairly well the strength distribution, or at least its general
shape. This is due to the strong influence of the topology over the weighted organization, and it illustrates
well the reason why we factorized the weights in Fig. 1 to account for the effect of the topology. However,
except for the world trade web and the US airports network, we find that the three models reproduce
poorly the distribution of weights and the disparity. This is not particularly surprising in the case of the US
airports network since this is the network for which our model predicts a weaker dependence on the metric
space, leaving weights mainly a function of nodes’ degree. It is not surprising in the case of the world trade
web either, given the small size of the network and the strong fluctuations present on it. Nevertheless,
our model is the only one that consistently reproduces the properties of the real weighted networks with
accuracy. More importantly, the three models perform very badly at reproducing the triangle inequality
curves for all networks (as shown on Figs. S14-S41). As pointed out by the referee, this provides a very
strong evidence that our assumption about the metric origin of weights is a much better explanation of the
real data. We have added a new section in the Supplementary Information to include this new analysis.

3.B The authors do a good job of further describing potential applications of their work. They may find
it helpful to briefly discuss the implications of this work toward previous research on link prediction, since
triangle participation is widely-adopted as a leading approach:

Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction problem for social networks. Journal of the
American society for information science and technology, 58(7), 1019-1031.
Lü, L., & Zhou, T. (2010). Link prediction in weighted networks: The role of weak ties. EPL (Europhysics
Letters), 89(1), 18001.
Zhao, Jing, Lili Miao, Jian Yang, Haiyang Fang, Qian-Ming Zhang, Min Nie, Petter Holme, and Tao Zhou.
“Prediction of links and weights in networks by reliable routes.” Scientific reports 5 (2015). Importantly,
the last method specifically aims to predict edge weights, and so the authors’ claim that their method “for
the first time, will provide estimates for the weights of such missing links” is false. In fact, the authors
do not actually use their methos to do link prediction, si this claim about a potential application is an
overstatement.

We thank the referee for pointing out interesting publications (especially the third one which had somehow
slipped under our radar) and we agree that our choice of wording is a bit ambiguous. Embeddings of



unweighted networks in metric spaces have already been shown to permit the prediction of missing links
[see for instance Nature 489, 537-540 (2012)], and we simply meant that our model now allows to extend
this powerful methodology to weighted networks. In other words, “for the first time” was referring to “the
first time” in the framework of networks embedded in metric space. We have corrected this ambiguity in
the main text and added these new references.

3.C The authors have chosen to still not provide a technical description in the paper for how clustering
arises for their new model. Sec. II begins: “Clustering, as a reflection of the triangle inequality, is the key
topological property coupling the bare topology of a complex system and its effective underlying metric
space [6]. In this context, the triangle inequality stipulates that if nodes A and B are close, and nodes A
and C are also close, we expect nodes B and C to be close as well; triangles are therefore more likely to
exist between nodes that are nearby.”

This extremely simplistic explanation is appropriate in Sec. II since the authors have not yet defined their
model. However, a similarly simplistic explanation is again stated in Sec. IV.A (even after the model is
introduced). At this point, I would have found a more technical description for the appearance of triangles
very helpful. If the derivation is identical to that in [6], it would helpful to point to the relevant equations
in [6] (of course, this requires the notation to be identical), otherwise I suggest including a brief summary
in Sec. IV or an appendix. For example, I believe it would be helpful to include some of the discussion in
the authors’ second paragraph of their response to my comment (3.E).

Thank you very much for this suggestion. In the previous version of the manuscript, we decided not to
include such details because they have already been discussed in our previous publications. However, we
agree that by adding such discussion the paper becomes more self-contained. Therefore, in the new version
of the manuscript we have included the discussion mentioned by the reviewer in Sec. IV.

3.D I appreciate the more-in-depth description, which will allow me to more precisely state my main concern,
which was not addressed in the authors’ response.

Specifically, if the latent-geometry model implies that the weight wij of edge (i, j) depends on the variable
ψij = ∆ij/κjκj , then the accuracy and inference of the model can be directly explored by studying the
relationship between these two variables. Instead, the authors study the nature of edge weights wij through
studying triangles. Again, with the Occam’s razor principle in mind, it is important that the authors provide
evidence and explain in the manuscript why it is beneficial to validate and fit their model using the more
complicated approach of studying triangles versus the simpler approach of studying edges.

In other words, the most direct way to determine if there if is a relationship between the latent geometry
distances xij and weights wij is simply to compare these - why resort to studying triangle inequalities?

As a related comment: In their response to my previous comment (3.E), the authors write “Rather, it is
an abstract distance that quantifies the likelihood of interactions between nodes. Consequently, a direct
measurement is not available ...” I am confused why a direct measurement is not available. If one constructs
an embedding, then one has xij .

There are some subtle issues here. We can, of course, find an embedding of a given network and then
compare weights directly against xij . This is, indeed, the main idea behind the plot in Fig. 3d. However,
to do so, we use a statistical inference technique that relies on the assumption that the network topology
has been generated by the model. Therefore, one could argue that, since we are fitting the data to the
model, it is not surprising to find a metric relation with the weights. This is, of course a misleading
concern because to find the embeddings we do not use information from the weights. In any case, for
the moment, we only know how to do embeddings of unweighted networks. In this manuscript, we are
precisely proposing the geometric model for weighted networks, which is the first step needed to propose
an embedding method for weighted networks in the future. The consideration of weights in the embedding
process will certainly change the inferred coordinates of the nodes, so that distances inferred from the
topology, although significantly correlated with weights, are not enough to explain the weighted structure
of networks, as expected. For these two reasons, we wanted a method that would be able to find metric
dependencies without relying on any embedding, that is, using only the network topology and the actual
weights. We find that our method to compute the triangle inequality curves fits this purpose very well. In



the new version of the manuscript, we have tried to be clearer in this respect.

3.E Paragraph just before II: “This model has the critical ability to discriminate between purely local
properties (e.g., related to the degree and strength of nodes) and the coupling of the topology and of the
weighted organisation with the metric space.” – I would say that triangle participation is a local property
too; it depends only on a node and its neighbors. Is local vs. nonlocal really the focus of the paper or is it
geometric vs non-geometric?

Perhaps we have not been very clear with this sentence. What we mean is that our model allows us to fix
the degree-strength distribution independently of the coupling with the metric space. Therefore, it allows
us to discount the effects of the degree-strength structure to reveal the coupling with the metric space in
real networks. Imagine, for instance, a model without this property, one where by changing the coupling
with the geometry we would obtain a completely different degree-strength distribution. Such model would
be extremely difficult to contrast against real weighted networks. In the new version of the paper, we have
rephrased this paragraph to clarify its meaning.



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

I am very sorry if the authors got offended by my use of words such as "misleading" or "incorrect". 

My intention was not that of offending, of course, but that of pointing out various aspects of this 

research that may indeed lead to confusing interpretations, and that in my view do not justify its 

publication in a non-specialised and broad-audience journal like Nature Communications.  

I also did not want to cast doubts on how respected some of the authors in this manuscript are 

internationally (I know they are). I just wanted to point out that these authors have carried out 

much better research in the past, and that this particular work does not raise particular scientific 

interest in my opinion.  

 

Since I have been asked to have a final critical look at the revised manuscript, I hope I can better 

explain the main reasons for my judgement in this report. I am not going to go over all the points 

of my criticism again (from the authors' last reply, it is clear that we disagree at many points); I 

just want to emphasise the main concerns, which do survive and remain serious after the authors' 

revisions to the manuscript.  

 

First of all, I hope the authors will agree that the value of their work has to be assessed NOT in 

relation to the mathematical model itself (proposing an abstract mathematical model of embedded 

weighted networks is certainly interesting but not exciting, and does not per se deserve publication 

in Nature Communication), BUT to the degree to which such model can explain the empirical 

structure of real-world networks. So I should not judge their results for synthetic networks, as 

these results are irrelevant for the value of the paper. This restricts the relevant assessment of the 

paper to the last four figures, i.e. the single figure with the triangle inequality violation (TIV) curve 

for the 3 real networks and the three 6-panel figures with the distributions/spectra of various 

topological networks properties.  

 

When it comes to this crucial empirical analysis, my concerns are really serious. The consistency 

between the model and real networks is not convincingly studied, in my opinion, for the following 

reasons.  

 

1) Only three networks are analysed, while the authors claim that their mechanism might be 

general and explain the nature of weights in generic real-world networks. Replicating the analysis 

AS IT IS on more networks would however still not be enough, because the tests of the 

consistency between model and data are unsatisfactory, due to the other two reasons below.  

 

2) In the 6-panel figures, the consistency is studied only in terms of overall properties like the 

degree distribution, the strength distribution, the strength-degree relationship, the weight 

distribution, the disparity, and the clustering-degree relationship. Now, for the first three 

properties the agreement is totally unsurprising, given that their model (as they repeatedly 

mention throughout the paper) can control for any degree distribution, any strength distribution, 

and any form of degree-strength correlation.  

Coming to the remaining three properties (weight distribution, disparity and clustering), my main 

concern is that, for many real networks, it turned out that these properties (or very similar ones) 

can be explained very well even WITHOUT invoking any coupling to an underlying metric space. 

See for instance the works by Garlaschelli and coauthors about maximum-entropy models of 

weighted networks, where it was shown that many properties of real weighted networks (including 

the WTW studied here) can be explained on the basis of strength and degrees alone. (By the way, 

I now realise that a recent extension of these models to the case of distance-dependent networks, 

http://arxiv.org/abs/1506.00348, appeared prior to the manuscript under review here but is not 

cited). 

Now, given that the model proposed here has an extra parameter (the coupling alpha with the 

postulated metric space), and that this parameter has a special value for which no coupling is 



realised, it is obvious that, purely because of the presence of an extra parameter, the model can 

fit the data better than a model without such a parameter, but where the degrees and strengths 

can be equally controlled for. Moreover, the agreement with the empirical weight distribution is not 

a strong test of their model, as one would like the latter to replicate (modulo the noise) each 

individual weight one by one, and not the statistical distribution alone (the weight distributions of 

the model and the data can be identical even if no single weight is correctly replicated by the 

model).  

This leads me to the conclusion that the 6-panel figures are not conclusive about the agreement 

between the model and the data: simpler models without the metric hypothesis may lead to 

equally good results.  

 

3) The only remaining real test of their hypothesis is the TIV curve. Now, I did not realise in my 

first reading of the manuscript that this quantity only tests the triangular inequality on the 

REALISED TRIANGLES in the network. It is clear that this restricts the analysis to the triples of 

nodes for which, at a purely topological level, the triangular inequality is already most likely to be 

realised. So the TIV (which is the ratio of the REALISED triangles that violate the triangular 

inequality to the total number of REALISED triangles) is a very weak measure of their hypothesis. I 

understand that the authors propose a sort of separation between the topology (which is pre-

determined assuming a metric coupling) and the weights (which are established on the realised 

links, again assuming a metric coupling). It is however difficult to become convinced that one 

should not base the analysis of the violation of triangular inequality in real weighted networks to 

ALL the triples of nodes, including those that are not realised triangles.  

Clearly, if V-shaped triples of nodes are included in the analysis, the violation of triangular 

inequality can presumably only get much bigger, leaving us little room to believe that hidden 

metric spaces are indeed at play behind real weighted networks. Note that, while an analysis of V-

shapes (or wedges) would be not so informative for binary networks, it would be very informative 

for weighted networks, given that I expect many V-shapes with two links with a strong weights 

(e.g. two peripheral nodes connected to the same hub) and a missing third link (between the two 

peripheral nodes. These weighted patterns appear to be in stark contrast with the metric 

hypothesis for weighted networks, and the fact that they are omitted in this analysis can be quite 

deceptive (again, no offence meant).  

 

 

 

Reviewer #3 (Remarks to the Author):  

 

I have reviewed the manuscript “The geometric nature of weights in real complex networks“ for 

the third time, and now recommend publication of the manuscript in Nature Communications. The 

authors have carefully and adequately addressed the concerns I previously raised.  

 

Overall, I find the paper to be a pioneering contribution for hyperbolic embeddings of weighted 

networks, a very important topic for network science.  

 

 



1. Replies to the comments of Reviewer #1

1.A I am very sorry if the authors got offended by my use of words such as "misleading" or "incorrect".
My intention was not that of offending, of course, but that of pointing out various aspects of this research
that may indeed lead to confusing interpretations, and that in my view do not justify its publication in
a non-specialised and broad-audience journal like Nature Communications. I also did not want to cast
doubts on how respected some of the authors in this manuscript are internationally (I know they are). I
just wanted to point out that these authors have carried out much better research in the past, and that
this particular work does not raise particular scientific interest in my opinion.

Since I have been asked to have a final critical look at the revised manuscript, I hope I can better explain
the main reasons for my judgement in this report. I am not going to go over all the points of my criticism
again (from the authors’ last reply, it is clear that we disagree at many points); I just want to emphasise
the main concerns, which do survive and remain serious after the authors’ revisions to the manuscript.

We thank the referee for his/her last report although we are sorry for not being able to convince him/her
about the importance of our work. Below, we provide detailed responses to the last comments by the
referee that we hope will help to clarify all his/her doubts about our work.

1.A First of all, I hope the authors will agree that the value of their work has to be assessed NOT in relation to
the mathematical model itself (proposing an abstract mathematical model of embedded weighted networks
is certainly interesting but not exciting, and does not per se deserve publication in Nature Communication),
BUT to the degree to which such model can explain the empirical structure of real-world networks. So
I should not judge their results for synthetic networks, as these results are irrelevant for the value of the
paper. This restricts the relevant assessment of the paper to the last four figures, i.e. the single figure
with the triangle inequality violation (TIV) curve for the 3 real networks and the three 6-panel figures with
the distributions/spectra of various topological networks properties.

We fully agree with the referee that the value of our work is not in our model but on the fact that it can
explain very well the patterns that we observe in real networks. We are, however, a bit surprised about the
description that the referee makes of our work. Our manuscript starts with an empirical analysis of seven
(not three) real weighted networks from very different domains. This is shown in figure one, where we show
that there is a different weighted organization of links that participate in triangles with respect to those
that do not participate in triangles. We interpret this empirical finding as a signature of an underlying
metric space and, then, we introduce our geometric model to explain such empirical observations. Our
work is not focused on the model as the referee suggests, even though we strongly believe that our model
is, at present, the best model for weighted networks in the market. We do not understand either why the
referee talks about the last four figures because our manuscript has only four figures. Besides, the single
figure with the TIV curve is actually a 4-panel figure with seven (not three) real networks and we only show
one 6-panel figure with the various topological networks properties, the rest of 6-panel figures are included
in the Supplementary Information.

1.A When it comes to this crucial empirical analysis, my concerns are really serious. The consistency
between the model and real networks is not convincingly studied, in my opinion, for the following reasons.

1) Only three networks are analysed, while the authors claim that their mechanism might be general and
explain the nature of weights in generic real-world networks. Replicating the analysis AS IT IS on more
networks would however still not be enough, because the tests of the consistency between model and data
are unsatisfactory, due to the other two reasons below.

Please notice that we analyse seven different real weighted networks from very different domains and not
three.

1.A 2) In the 6-panel figures, the consistency is studied only in terms of overall properties like the
degree distribution, the strength distribution, the strength-degree relationship, the weight distribution, the
disparity, and the clustering-degree relationship. Now, for the first three properties the agreement is totally
unsurprising, given that their model (as they repeatedly mention throughout the paper) can control for any
degree distribution, any strength distribution, and any form of degree-strength correlation.



Of course, these measures where included as a consistency check of the model so that we are sure that,
indeed, our model does what is claimed in the manuscript it does, that is, to have full control of the joint
degree-strength distribution, regardless of the level of coupling with the metric space.

1.A Coming to the remaining three properties (weight distribution, disparity and clustering), my main
concern is that, for many real networks, it turned out that these properties (or very similar ones) can be
explained very well even WITHOUT invoking any coupling to an underlying metric space. See for instance
the works by Garlaschelli and coauthors about maximum-entropy models of weighted networks, where it
was shown that many properties of real weighted networks (including the WTW studied here) can be
explained on the basis of strength and degrees alone. (By the way, I now realise that a recent extension
of these models to the case of distance-dependent networks, http://arxiv.org/abs/1506.00348, appeared
prior to the manuscript under review here but is not cited). Now, given that the model proposed here has
an extra parameter (the coupling alpha with the postulated metric space), and that this parameter has
a special value for which no coupling is realised, it is obvious that, purely because of the presence of an
extra parameter, the model can fit the data better than a model without such a parameter, but where the
degrees and strengths can be equally controlled for.

We strongly disagree here. The fact that we have an extra parameter by any means implies that the model
can fit the data better. Imagine that you have a model that explains some empirical observations but it fails
in some others. Now you add a new mechanism that is totally opposite to the real nature of the system
under study. Such model, even with more parameters, would not improve the agreement with the data. In
any case, the models that you mention are not good in general at reproducing the local heterogeneity of
weights, as measured by the disparity measure, or the weight distribution. This can be checked in the new
set of numerical experiments that we performed in response to the second referee and that we included in
the Supplementary Information in the previous resubmission.

1.A Moreover, the agreement with the empirical weight distribution is not a strong test of their model, as
one would like the latter to replicate (modulo the noise) each individual weight one by one, and not the
statistical distribution alone (the weight distributions of the model and the data can be identical even if
no single weight is correctly replicated by the model). This leads me to the conclusion that the 6-panel
figures are not conclusive about the agreement between the model and the data: simpler models without
the metric hypothesis may lead to equally good results.

First notice that simpler models cannot reproduce very well the weight distribution, whereas our model is
very good at this job (in fact the shape of the weight distribution is strongly dependent on the coupling,
please see Supplementary Figure 2). Second, what you mention about replicating weights one by one is, in
fact, related to the disparity measure, that is very well reproduced by model, as opposed to models without
a metric space.

1.A 3) The only remaining real test of their hypothesis is the TIV curve. Now, I did not realise in my
first reading of the manuscript that this quantity only tests the triangular inequality on the REALISED
TRIANGLES in the network. It is clear that this restricts the analysis to the triples of nodes for which,
at a purely topological level, the triangular inequality is already most likely to be realised. So the TIV
(which is the ratio of the REALISED triangles that violate the triangular inequality to the total number of
REALISED triangles) is a very weak measure of their hypothesis. I understand that the authors propose
a sort of separation between the topology (which is pre-determined assuming a metric coupling) and the
weights (which are established on the realised links, again assuming a metric coupling). It is however
difficult to become convinced that one should not base the analysis of the violation of triangular inequality
in real weighted networks to ALL the triples of nodes, including those that are not realised triangles.
Clearly, if V-shaped triples of nodes are included in the analysis, the violation of triangular inequality can
presumably only get much bigger, leaving us little room to believe that hidden metric spaces are indeed at
play behind real weighted networks. Note that, while an analysis of V-shapes (or wedges) would be not
so informative for binary networks, it would be very informative for weighted networks, given that I expect
many V-shapes with two links with a strong weights (e.g. two peripheral nodes connected to the same
hub) and a missing third link (between the two peripheral nodes. These weighted patterns appear to be
in stark contrast with the metric hypothesis for weighted networks, and the fact that they are omitted in
this analysis can be quite deceptive (again, no offence meant).



Please notice that our test of the triangle inequality is performed without the embedding of the network.
Instead, we use the relation between hyperbolic distances and weights to perform it by estimating distances
on the basis of observed weights. Therefore, the referee’s suggestion of using wedges is not possible because
we cannot infer the distance between the two disconnected nodes.

However, we can perform a similar test to the TIV curve on wedges to check the hidden metric space
hypothesis. Suppose that nodes i, j and k form a wedge in which nodes j and k are not connected.
According to the hypothesis, we expect the distance xjk between j and k, the disconnected pair, to be
larger than the other two distances, xij and xik. Therefore, out of the three possible orderings to test the
triangle inequality, the one that can be violated is xij + xik ≥ xjk. Even though we have no access to the
value of xjk without a value for ωjk, we expect it to be larger than R because j and k are not connected
and, thus,

xij + xik ≥ xjk ≥ R. (1)

Therefore, the only clear violation we can detect in wedges is

xij + xik < R. (2)

In other words, assuming xjk ≥ R for disconnected pairs, the inequality (2) implies the violation of the
triangle inequality: xij + xik < R ≤ xjk ⇒ xij + xik < xjk. However, notice that the violation of the
triangle inequality does not necessarily imply inequality (2); if xjk > xij + xik ≥ R, the triangle inequality
is violated but inequality (2) is not satisfied. Consequently, contrary to the referee’s intuition, if the hidden
metric space hypothesis is true, not only the fraction of wedges satisfying inequality (2) should be very
small for α > αreal, but it should also be smaller than the fraction of violations of the triangle inequality
computed over topological triangles—the TIV curve.

Figure 1 shows the comparison between the TIV curve and the fraction of wedges satisfying inequality (2),
as a function of α, for a synthetic network as well as for the E. Coli network. This new curve decays,
in both cases, to zero at the same value of α as the TIV curve. These results confirm the conclusions
presented above, yet providing further evidence of the metric nature of weights in real weighted networks.
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Figure 1: Comparison of the TIV curves computed over triangles and the fraction of wedges satisfying
inequality (2) computed over wedges on two networks. Left: Synthetic network with α = 0.5, γ = 2.5,
β = 2, η = 1, N = 104 and no noise. Right: E. Coli network.


	tpr a.pdf
	tpr b
	tpr c
	tpr d
	tpr e
	tpr f

