
Supplementary information for
“Uncovering the hidden geometry of metabolic networks”
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1Departament de Qúımica F́ısica, Universitat de Barcelona, Mart́ı i Franquès 1, 08028 Barcelona, Spain
2Departament de F́ısica Fonamental, Universitat de Barcelona, Mart́ı i Franquès 1, 08028 Barcelona, Spain

Contents

The S1 model and its extension to bipartite networks 2
The S1 × S1 model 2
Specific model for metabolic networks 4
Parameters estimation and finite size effects 4
Parameters of the real metabolisms 5

Embedding algorithm and validation on S1 × S1 synthetic networks 7
MLE for expected metabolites’ degrees κm 8
MLE for angular coordinates θ 8

Classification of pathways in E. coli depending on localization 10

Determination of angular sectors 10

Pathways crosstalk and the disparity filter 10

Results for human cells metabolism 12

References 16

Electronic Supplementary Material (ESI) for Molecular BioSystems
This journal is © The Royal Society of Chemistry 2012



2

THE S1 MODEL AND ITS EXTENSION TO BIPARTITE NETWORKS

The S1 model [1] is a complex network generator able to generate networks which are, simultaneously, scale-
free, small-worlds, and highly clustered, as observed in the majority of real networks [14]. Nodes in this model are
distributed in a metric space (in the simplest case a one-dimensional circle) abstracting (di)similarities among the
elements of the network. The S1 model generates networks according to the following steps:

1. Distribute N nodes uniformly over the circle S1 of radius R = N/(2π), so that the node density on the circle is
fixed to 1.

2. Assign to all nodes a hidden variable κ representing their expected degrees. To generate scale-free networks, κ
is drawn from the power-law distribution

ρ(κ) = κγ−1
0 (γ − 1)κ−γ , κ ∈ [κ0,∞), (1)

κ0 = 〈k〉γ − 2
γ − 1

, (2)

where κ0 is the minimum expected degree, and 〈k〉 is the network average degree.

3. Let κ and κ′ be the expected degrees of two nodes located at distance d = N∆θ/(2π) measured over the circle,
where ∆θ is the angular distance between the nodes. Connect each pair of nodes with probability p(x), where
the effective distance is defined as x ≡ d/(µκκ′), and µ is a constant fixing the average degree.

The connection probability p(x) can be any integrable function. Here we chose the distribution

p(x) =
1

1 + xβ
, (3)

where β is a parameter that controls clustering in the network. This distribution is known in the physics literature
as the Fermi-Dirac distribution. It is the distribution that maximizes the randomness of the network under the
constraints of having a fixed sequence of expected degrees, given angular coordinates for all nodes, and a maximum
of one link between any pair of nodes.

Using the formalism developed in [2], we compute the average degree of a node with hidden variable κ (notice that
since the angular distribution is homogeneous, this quantity does not depend on the angular coordinate of the node
and, therefore, we chose one node located at θ = 0) as

k̄(κ) = N

∫
dκρ(κ′)

1
2π

∫ π

−π
dθp

(
|θ|R
µκκ′

)
=

2π〈k〉µκ

β sin
[
π
β

] . (4)

By choosing parameter µ as

µ =
β

2π〈k〉
sin
[
π

β

]
. (5)

the expected degree of a node with hidden variable κ is simply k̄(κ) = κ and, therefore, the degree distribution scales
as P (k) ∼ k−γ for large k. Notice that this is the reason why in the main text we use degrees instead of expected
degrees.

The S1 × S1 model

The S1 model can be extended to bipartite networks as follows:

1. Nm metabolites and Nr reactions are homogeneously distributed on a circle of radius R. The density of
metabolites and reactions over the circle are then δm = Nm/2πR and δr = Nr/2πR. These two densities remain
constant in the thermodynamic limit so that the radius of the circle is proportional to the number of metabolites
or reactions.

2. Each metabolite is assigned a hidden variable κm and each reaction a hidden variable κr. These random variables
follow probability densities ρm(κm) and ρr(κr), respectively.
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3. The connection probability between a reaction with hidden variable κr and a metabolite with hidden variable
κr separated by a distance dmr = R∆θmr (∆θmr being the angular separation) is given by

p(κm, θm;κr, θr) = p

(
dmr
µκmκr

)
, (6)

which can be any integrable function.

Analogously to the unipartite case, we compute the average degree of a metabolite with hidden variable κm as

k̄m(κm) = Nr

∫
dκrρr(κr)

1
2π

∫ π

−π
dθp

(
|θ|R
µκmκr

)
. (7)

Similarly, the average degree of a reaction with hidden variable κr is

k̄r(κr) = Nm

∫
dκmρr(κm)

1
2π

∫ π

−π
dθp

(
|θ|R
µκmκr

)
. (8)

By doing the change of variables x = θR
µκmκr

and taking the thermodynamic limit R→∞, we can write

k̄m(κm) = 2µδrI〈κr〉κm, (9)

k̄r(κr) = 2µδmI〈κm〉κr, (10)

where I =
∫∞

0
dxp(x). By taking the average again

〈km〉 = 2µδrI〈κr〉〈κm〉, (11)

〈kr〉 = 2µδmI〈κm〉〈κr〉. (12)

We immediately see that the following relation holds

〈km〉
〈kr〉

=
δr
δm

=
Nr
Nm

. (13)

In terms of the average degrees, parameter µ takes the form

µ =
〈km〉

2δrI〈κr〉〈κm〉
=

〈kr〉
2δmI〈κr〉〈κm〉

(14)

and, therefore, Eqs. (9) and (10) can be rewritten as

k̄m(κm) =
〈km〉
〈κm〉

κm (15)

k̄r(κr) =
〈kr〉
〈κr〉

κr (16)

We always have the freedom to chose the averages of the hidden variables κm and κr to coincide with the actual
averages of the observable variables km and kr, that is, 〈km〉 = 〈κm〉 and 〈kr〉 = 〈κr〉. In this case we can write

k̄m(κm) = κm and k̄r(κr) = κr (17)

with parameter µ

µ =
1

2δrI〈κr〉
=

1
2δmI〈κm〉

. (18)

This is the choice that we shall follow in the rest of the text. The degree distributions can now be easily written as

Pm(km) =
∫
dκmρm(κm)

1
km!

κkm
m e−κm (19)

Pr(kr) =
∫
dκrρr(κr)

1
kr!

κkr
r e
−κr (20)
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Specific model for metabolic networks

In the case of metabolic networks, the distribution of metabolites’ degrees is a power law with exponent γ ≈ 2.6
and the distribution of reactions’ degrees is Poisson-like. We can generate this type of network by chosing

ρm(κm) = (γ − 1)κγ−1
m,0 κ

−γ
m with κm ≥ κm,0 =

γ − 2
γ − 1

〈κm〉 (21)

and

ρr(κr) = δ(κr − 〈κr〉). (22)

Reaction degrees are then Poisson distributed, that is,

Pr(kr) =
1
kr!
〈κr〉kre−〈κr〉 (23)

whereas the degree distribution of metabolites is

Pm(km) = (γ − 1)κγ−1
m,0

Γ(km + 1− γ, κm,0)
km!

(24)

We also chose the connection probability

p(x) =
1

1 + xβ
(25)

so that the integral I = π/(β sin (π/β)). We can also chose δm = 1 without loss of generality. Therefore, the number
of relevant (free) parameters of the model are 〈κr〉, 〈κm〉, β, and γ.

Parameters estimation and finite size effects

All results in the previous section are strictly true in the thermodynamic limit. In finite size networks, some of
the expressions have to be corrected by size dependent factors as we will show below. Besides, there is an extra
complication due to the fact that this model can generate nodes with zero degree, which are never observed in a real
network.

Suppose we are given a real network with Nobs
m metabolites and Nobs

r reactions and average degrees 〈km〉obs and
〈kr〉obs with exponent γ. We now want to estimate the values of 〈κr〉, 〈κm〉, Nm and Nr in our model. The first
complication arises because in our model, out of the Nm nodes, there is a fraction Pm(0)Nm nodes with zero degree
that cannot be observed. Therefore, if we observe Nobs

m metabolites, the best estimation of Nm is

Nm =
Nobs
m

1− Pm(0)
(26)

and, analogously

Nr =
Nobs
r

1− Pr(0)
(27)

The second complication is due to the fact that the average degree of a power law distribution strongly depends on
the maximum degree observed in the sample. For instance, in the case of our ρm(κm) = (γ−1)κγ−1

m,0 κ
−γ
m , if the sample

is finite, the distribution is truncated at a certain value κm,c that, typically, increases with the size of the sample. If
we compute the average of ρm(κm) but only up to the maximum κm observed, we have

〈κm(κm,c)〉 = (γ − 1)κγ−1
m,0

∫ κm,c

κm,0

κ1−γ
m dκm (28)

and so

〈κm(κm,c)〉 = 〈κm〉

(
1−

(
κm,0
κm,c

)γ−2
)

(29)
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Notice that this large parenthesis converges to 1 in the thermodynamic limit but for γ ≈ 2 it can be fairly large even
for large systems. Let us call this factor α(κm,c), that is,

α(κm,c) ≡

(
1−

(
κm,0
κm,c

)γ−2
)

(30)

Now we need to keep track of the finite size effects from the very beginning. This means that we have to correct
Eqs. (9) and (10) as follows

k̄m(κm;κmc) = κm (31)

k̄r(κr;κmc) = α(κm,c)κr (32)

and taking averages

〈km(κmc)〉 = α(κm,c)〈κm〉 (33)

〈kr(κmc)〉 = α(κm,c)〈κr〉 (34)

Notice that, to write these set of equations we have used that variable κr is not power law distributed.
Still, this average 〈km(κm,c)〉 cannot be directly identified with the measured average degree because it also accounts

for nodes of zero degree. To correct for this effect, we write

〈km〉obs =
〈km(κm,c)〉
1− Pm(0)

(35)

and so

〈κm〉 =
1− Pm(0)
α(κm,c)

〈km〉obs (36)

and analogously

〈κr〉 =
1− Pr(0)
α(κm,c)

〈kr〉obs (37)

with

Pm(0) = (γ − 1)κγ−1
m,0 Γ(1− γ, κm,0) (38)

Pr(0) = e−α(κm,c)〈κr〉 (39)

κm,c = kmax,obsm (40)

Plugging Eqs. (21), (30), (38), and (40) into Eq. (36), we obtain a closed equation for 〈κm〉 that can be solved
numerically. Once this parameter is known, by inserting it into Eqs. (30) and (38) we obtain the values of α(κm,c)
and Pm(0). Finally, with the value of α(κm,c) and Eqs. (37) and (39) we get the values of 〈κr〉 and Pr(0).

Parameters of the real metabolisms

Using information from the BiGG database [3, 4], we build bipartite metabolic network representations of the two
analyzed metabolisms, E. coli and human, avoiding reactions that do not involve direct chemical transformations, such
as diffusion and exchange reactions. The bipartite representation differentiates two subsets of nodes, metabolites and
reactions, mutually interconnected through unweighted and undirected links, without self-loops or dead end reactions.
In particular, we analyze the iAF1260 version of the K12 MG1655 strain of the metabolism of E. coli [5], and the
existing annotated list for human metabolism [6]. For the sake of simplicity and to enhance the resolution of the
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Supplementary Figure S1: Empirical vs. model degree distributions Complementary cumulative degree distribution
(defined as Pc(k) =

P
k′=k P (k)) of metabolites and reactions degrees for the E. coli and human metabolism as compared to

two networks generated with the model using the parameters in the text.

applied algorithm, currency metabolites are eliminated, altogether with a few isolated reaction-metabolite pairs and
reaction-metabolite-reaction triplets. For E. coli, this leads to a final set of 1512 reactions and 1010 metabolites
while human metabolism is nearly 3/2 larger, with 2201 reactions and 1482 metabolites. Characteristic power-law
degree distributions for metabolites are readily identified in both organisms, with exponents that are rather similar.
Reactions, meanwhile, conform to Poisson-like distributions, whose average values are 2.77 and 2.93 respectively.

There is some controversy on whether metabolic networks are or are not well described by power laws [7–10].
To check this issue, we perform a goodness of fit to test the validity of the null model that the observed empirical
metabolite degree distribution has been generated by a power law. We compute the Kolmogorov statistic

D = max
k≥kmin

∣∣∣∣∣Pc(k)−
∑
k′=k k

′−γ∑
k′=kmin

k′−γ

∣∣∣∣∣ , (41)

where kmin is the minimum degree beyond which we expect the power law to hold and Pc(k) is the empirical
complementary cumulative degree distribution of metabolites. The exponent γ and the minimum degree kmin are
computed using maximum likelihood methods as described in [7], resulting in kmin = 4, γ = 2.5(6), D = 0.065 for the
E. coli metabolism and kmin = 2, γ = 2.3(7), D = 0.006 for the human metabolism. According to the Kolmogorov
Smirnov (KS) test, the variable

√
ND follows the Kolmogorov distribution PK(K), which 95% confidence level is at

K95% = 1.35. Given the size of our samples, we obtain
√
ND = 1.17 < 1.35 for E. coli and

√
ND = 0.22 << 1.35

for human. This implies that the null model cannot be ruled out and, consequently, that power laws are a plausible
explanation of our data.

• To find the parameters of the E. coli metabolic network, we use a version of the network where different isomers
are considered as different metabolites. Further, we remove the following currency metabolites: h-841, h2o-694,
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atp-338, pi-308, adp-260, ppi-129, nad-115, nadh-109, amp-85, nadp-83, nadph-81. Ten isolated metabolite-
reaction pairs and six isolated reaction-metabolite-reaction triplets have also been removed. For this network,
we measure Nobs

m = 1010, Nobs
r = 1512, 〈km〉obs = 4.15, and 〈kr〉obs = 2.77. Using the formalism described in the

previous section, we obtain the following estimation of the parameters: 〈κm〉 = 4.06, 〈κr〉 = 2.65, Nm = 1123,
and Nr = 1720, and R = Nm/2π = 178.7.

• In the case of the Human metabolism, the removed currency metabolites are: h-1250, h2o-916, atp-309, coa-277,
pi-240, adp-237, o2-212, nadp-210, nadph-207, nad-202, nadh-195, ppi-114. Three isolated metabolite-reaction
pairs have also been removed. We then measure Nobs

m = 1482, Nobs
r = 2201, 〈km〉obs = 4.34, and 〈kr〉obs = 2.93,

which leads to the following estimation of the parameters: 〈κm〉 = 4.22, 〈κr〉 = 2.73, Nm = 1646, and Nr = 2326,
and R = Nm/2π = 235.9.

In Fig. S1, we show the degree distributions for both E. coli and human metabolisms and compare them with those
corresponding to networks generated by the S1×S1 model. The exponent β takes the value β = 1.3 in both networks.
The agreement between the model and the real metabolic networks is very good for metabolites. However, the model
overestimates the probability of reactions involving five or more metabolites. We perform a KS test to determine
whether the empirical distribution and the one generated by the model are different. In this case, the Kolmogorov
statistic is

D = max
k≥kmin

∣∣Pc(k)− Pmodelc (k)
∣∣ , (42)

where Pmodelc (k) is the cumulative degree distribution of metabolites generated by our synthetic model with the same
parameters as the real one. The parameter to be compared to K95% is now√

NNmodel

N +Nmodel
D. (43)

This parameter takes the value 1.03 with kmin = 4 for the E. coli network and 0.95 with kmin = 3 for the human
one. These results indeed justify that networks generated by our model are reproducing well the properties of the
real networks. The small discrepancy between our model and the real system is focalized in metabolites of very low
degree. However, our embedding method and the results shown in this paper are not affected by these low degree
metabolites.

EMBEDDING ALGORITHM AND VALIDATION ON S1 × S1 SYNTHETIC NETWORKS

Once the parameters 〈κr〉, 〈κm〉, β, and γ are estimated, we perform the embedding of the bipartite network to
infer the angular coordinates of metabolites and reactions. Let A ≡ (aij)Nm×Nr , i = 1, · · · , Nm, j = 1, · · · , Nr, be
the adjacency matrix of the network, defined as aij = 1 if metabolite i participate in reaction j and zero otherwise
(in the rest of the text, symbol i is reserved to enumerate metabolites and symbol j to reactions). Our goal is to
find the set of coordinates {κm,i, θm,i, θr,j} that best match the S1 × S1 model in a statistical sense. To this end, we
use maximum likelihood estimation (MLE) techniques. Let us compute the posterior probability, or likelihood, that
a network given by its adjacency matrix A is generated by the S1 × S1 model, L(A). This probability is

L(A) =
∫
· · ·
∫
L(A, {κm,i, θm,i, θr,j})

Nm∏
i=1

dθm,idκm,i

Nr∏
j=1

dθr,j , (44)

where function L(A, {κm,i, θm,i, θr,j}) within the integral is the joint probability that the model generates the adjacency
matrix A and the set of hidden variables {κm,i, θm,i, θr,j} simultaneously. Using Bayes’ rule, we can compute the
likelihood that nodes’ coordinates take particular values {κm,i, θm,i, θr,j} given the observed adjacency matrix A.
This probability is simply given by

L({κm,i, θm,i, θr,j}|A) =
L(A, {κm,i, θm,i, θr,j})

L(A)
=

Prob({κm,i, θm,i, θr,j})L(A|{κm,i, θm,i, θr,j})
L(A)

, (45)
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where

Prob({κm,i, θm,i, θr,j}) =
1

(2π)Nm+Nr

Nm∏
i=1

ρm(κm,i) (46)

is the prior probability of the hidden variables given by the model,

L(A|{κm,i, θm,i, θr,j}) =
Nm∏
i=1

Nr∏
j=1

p(xij)aij [1− p(xij)]1−aij (47)

is the likelihood of observing A if the hidden variables are {κm,i, θm,i, θr,j},

xij =
Nr∆θij

β sin (π/β)κm,i
, (48)

∆θij = π − |π − |θm,i − θr,j ||, (49)

and p(x) is given by Eq. (25).
The MLE values of the hidden variables {κ∗m,i, θ∗m,i, θ∗r,j} are then those that maximize the likelihood in Eq. (45)

or, equivalently, its logarithm,

lnL({κm,i, θm,i, θr,j}|A) = C − γ
Nm∑
i=1

lnκm,i +
Nm∑
i=1

Nr∑
j=1

{aij ln p(xij) + (1− aij) ln [1− p(xij)]} , (50)

where C is independent of the nodes’ coordinates {κm,i, θm,i, θr,j}.

MLE for expected metabolites’ degrees κm

The derivative of Eq. (50) with respect to expected degree κm,l of metabolite l is

∂

∂κm,l
lnL({κm,i, θm,i, θr,j}|A) = − γ

κm,l
− β

κm,l

 Nr∑
j=1

p(xlj)−
Nr∑
j=1

alj

 . (51)

The first term within the parenthesis is the expected degree of metabolite l, while the second term is its actual degree
km,l. Therefore, the value κ∗m,l that maximizes the likelihood is given by

k̄(κ∗m,l) = κ∗m,l = km,l −
γ

β
. (52)

Since κ∗l can be smaller than κ0 in the last equation, we set

κ∗m,l = max
(
γ − 2
γ − 1

〈κm〉, km,l −
γ

β

)
. (53)

MLE for angular coordinates θ

Having found the MLE values for expected degrees κm, we now have to maximize Eq. (45) with respect to angular
coordinates. This task is equivalent to maximizing the partial log-likelihood

lnL(A|{κ∗m,i, θm,i, θr,j}) =
Nm∑
i=1

Nr∑
j=1

{aij ln p(xij) + (1− aij) ln [1− p(xij)]} . (54)
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Supplementary Figure S2: Calibration of the embedding algorithm. The left plot shows the inferred angular coor-
dinates of metabolites and reactions vs. the real ones of a network generated with the S1 × S1 with the same parameters as
the real metabolism. The right plot shows the empirical connection probability obtained from the embedding compared to the
theoretical one in Eq. (25)

The maximization of Eq. (54) with respect to the angular coordinates cannot be performed analytically and we have
to rely on numerical optimization procedures. Unfortunately, the low degrees of reactions implies that any attempt
to maximize Eq. (54) directly is doomed to fail. Indeed, the uncertainty in the position of a low degree reaction
is necessary very high. This, in turn, increases the uncertainty in the position of its metabolites’ neighbors, which
translates into global uncertainty in the localization of nodes and metabolites. We therefore adopt a different strategy.
Starting from the original bipartite network, we construct its one mode projection over the space of metabolites, that
is, we consider only one type of nodes (metabolites) and declare two metabolites as connected if they participate in
the same reaction in the original bipartite net. If metabolites are power-law distributed in the bipartite network, the
obtained unipartite network is also power-law distributed with the same exponent. This solves the problem mentioned
above because, now, high degree nodes can be located with high accuracy so that we can use afterwards these nodes
as a template to find the coordinates of the rest of the nodes.

We find the angular coordinates of metabolites by fitting the one-mode projected network using the S1 model as
described in [11]. Once the angular coordinates θ∗m,i are known, we find the optimal angular coordinates of reactions by
maximizing Eq. (54) but using the already known coordinates of metabolites as fixed inputs. This final maximization
is a simple procedure because, being θ∗m,i fixed, we can maximize the likelihood of each reaction independently.

We first test the described procedure in synthetic networks generated by the S1×S1 model with the same parameters
as the real E. coli metabolism. Results are shown in Fig. S2. The left plot shows the inferred angles for metabolites
and reactions vs. the real ones. As it can be clearly seen, up to minor fluctuations and a global phase shift due to
rotational symmetry of the model, the agreement between the real coordinates and those inferred by the algorithm is
very good. The right plot shows the connection probability using the inferred coordinates vs. the one used to generate
the model Eq. (25). Again, the agreement between the two is excellent.
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CLASSIFICATION OF PATHWAYS IN E. COLI DEPENDING ON LOCALIZATION

Supplementary Table SI: Classification of E. coli’s pathways. Pathways are classified as “localized” (75% of the pathway
localized in a single bin), “bimodal” (75% of the pathway localized in two bins) “multi-peaked” (75% of the pathway localized
in three bins or more with at least one peak above 25%), and “transversal” (no bin above 25%) according to the results and
bin size of Fig. 3. Pathways in italics indicate that, although they are split in two or three bins, these bins are adjacent and so
a change in the bin resolution would lead to their redefinition as more localized pathways.

LOCALIZED BIMODAL MULTI-PEAKED TRANSVERSAL

Glu His Ala, Asp Cofactor and Prosthetic

Folate Met Arg, Pro Purine and Pirimidine

Methylglyoxal Thr, Lys Cys Alternate Carbon

Oxidative Phosphorilation Anaplerotic Gly, Ser Transport Inner Membrane

Murein B Citric Acid Cycle Tyr, Phe, Trp

Murein R Glyoxylate Val, Leu, Ile

Pentose Phosphate Nucleotides S

Inorganic Ion Transport tRNA Charging

Membrane Lipid Glycolisis

Pyruvate

Nitrogen

Lipopolysaccharide

Cell Envelope

Glycerophospholipid

DETERMINATION OF ANGULAR SECTORS

Angular sectors shown in Fig. 4 of the main text are computed as follows. Let us assume that all reactions are
randomly and homogeneously distributed on the circle. In this case, the probability density of the distance between
two consecutive reactions is the exponential distribution

φ(l) =
1
l̄
el/l̄ (55)

where l̄ is the average distance between two consecutive reactions. In our case, since concentration of reactions in the
circle is fixed to 1, we have l̄ = 1. The probability to find a gap larger than l is therefore

Φ(l) =
∫ ∞
l

e−l
′
dl′ = e−l. (56)

With this probability, we fix a significance level of 0.1%, leading to a critical distance value lcrit = ln 1000 (in angular
terms this is equivalent to θcrit = 2π ln 1000/1500 ≈ 0.03Rad), that is, the probability to find a gap larger than lcrit
under the null assumption that reactions are homogeneously distributed is 0.1%. Then, we can consider a gap as
significant whenever it is larger than lcrit. The significance level 0.1% is chosen such that with the size of our sample
(around 1500 reactions) we should expect at most one gap above the critical value. In this case, we can define a sector
as the set of points separated by two such significant gaps with the condition that this set has 5 or more reactions.

PATHWAYS CROSSTALK AND THE DISPARITY FILTER

We use the following measure of crosstalk between pathways:

XTPaPb =
∑
j∈Pa

∑
j′∈Pb

∑
i∈ν

(p(xij) + p(xij′))|observed links, (57)

where ν ∈Mab is the set of metabolites shared by the reactions in the two pathways Pa and Pb, and only probabilities
of connections associated to observed links are considered.
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Of 561 possible pathway pairs in E. coli, 460 are non-zero crosstalk (82.00%) with a minimum value of 1.80
and a maximum of 159.91. In human cells, of 4278 possible pathway pairs, 1689 are non zero (38.64%) with a
minimum crosstalk of 1.19 and a maximum of 131.28. Moreover, there is an isolated pathway (48, Limonene and
Pinene Biosynthesys) without crosstalk (no common metabolites with other pathways). So, at this level human cells
metabolism seems to be more modular than E. coli’s.
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Supplementary Figure S3: Disparity backbone vs global threshold backbone.

The obtained pathway crosstalk matrices are filtered to obtain backbones according to the multiscale methodology
in [12], which do not belittle small pathways and gives an effective tradeoff between maximum weight and nodes in
the backbone with the minimum number of links. A global threshold filter would lose many more nodes for the same
number of links and weight in the backbone, see Fig. S3.

The disparity filter methodology preserves interactions with a statistically significant intensity for at least one of
the two nodes the edge is incident to. To decide whether a connection is relevant, the filter compares against a null
hypothesis which assumes that the local weights associated to a node are uniformly distributed at random. In this way
one discounts intensities that could be explained by random fluctuations. More specifically, a p value –the probability
αij that if the null hypothesis is true one obtains a value for the normalized weight wij/si between nodes i and j
larger than or equal to the observed one– is calculated for each edge in the network. By imposing a significance level
α, the links that carry weights that can be considered not compatible with a random distribution can be filtered out
with a certain statistical significance. Links in the backbone will be then those which satisfy

αij = 1− (k − 1)
∫ wij/si

0

(1− x)k−2dx < α, (58)

where k is the degree of node i. By changing the significance level, we can filter out the links progressively focusing on
more relevant ones. As a result, the disparity filter reduces significantly the number of edges in the original network,
while keeping almost a large fraction of the total weight and the total number of nodes. It preserves as well the cutoff
of the degree distribution, the form of the weight distribution, and the clustering coefficient.
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RESULTS FOR HUMAN CELLS METABOLISM

In Fig. S4, we show the embedding representation of human cells metabolism. In Fig. S5, we show the angular
distribution on the ring of the whole list of pathways evaluated from the circle-based embedding of the reactions they
involve.
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Supplementary Figure S 4: Human metabolism map. Yellow circles represent reactions whereas blue squares are
metabolites. For each metabolite, the symbol size is proportional to the logarithm of the degree and radially placed according
to the expression r = R−2 ln km. Black (grey) connections are those that according to the model have a probability of existence
larger (smaller) than 0.5. We used the software “Pajek” to elaborate all network representations in this paper figures’.
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Supplementary Figure S5: Angular distribution of pathways for the human metabolism. The whole angular
domain [0, 360o] is divided in 50 bins of 7, 2o each and for each bin we compute the fraction of reactions of the pathway in it.
Each pathway is shown in a different graph. Different colors indicate different metabolic families. Panel I: black for Amino
Acids metabolism (numbering the graphs from left to right and from top to bottom, 1-14), red for metabolism of Other Amino
Acids (15-21), dark green for Nucleotide metabolism (22-28), turquoise for Energy metabolism (29,30), purple for biosynthesis
of Other Secondary Metabolites (31-34), brown for miscellaneous and others (35,36). Panel II: orange for Carbohydrate
metabolism (1-16), blue for metabolism of Cofactors and Vitamins (17-30), violet for Transport pathways (31-33), light green
for Xenobiotics Biodegradation (34). Panel III: orange for Glycan metabolism (1-11), and dark brown for Lipid metabolism
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file.
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